Initial Site Characterization

Radford High School Track and Field Excavation 4361 Salt Lake Boulevard (Portion of TMK No: [1] 9-9-002: Parcel 023) Honolulu, Oahu, Hawaii

> March 21, 2014 Project No. 17012-012148.00/Task 48

> > Prepared for.

STATE OF HAWAII DEPARTMENT OF EDUCATION 4680 Kalanianaole Highway Honolulu, Hawaii 96821

Move Forward with Confidence

Prepared by:

BUREAU VERITAS NORTH AMERICA, INC. Health, Safety, and Environmental Services 841 Bishop Street, Suite 1100 Honolulu, Hawaii 96813 808.531.6708 www.us.bureauveritas.com

CONTENTS

<u>Sectio</u>	<u>Pa</u>	<u>je</u>
List o Execu	f Acronyms utive Summary	iv . v
1.0	INTRODUCTION AND PURPOSE	.1
2.0	BACKGROUND	. 1
2.1	SITE DESCRIPTION	
2.1.1	Soil Conditions	
2.1.2	Groundwater Conditions	
2.2	HISTORICAL SITE USE	
2.2	RECENT CONSTRUCTION ACTIVITIES	2
2.0		
3.0	APPLICABLE ACTION LEVELS	. 2
	FIELD ACTIVITIES	
4.0		
4.1	INITIAL RESPONSE	
4.2	INVESTIGATION PLANNING	
4.3	SOIL SAMPLING ACTIVITIES	. 4
4.4	FIELD REPLICATE SAMPLING	. 5
4.5	CHAIN-OF-CUSTODY	
4.6	DECONTAMINATION PROCEDURES	6
4.7	INVESTIGATION DERIVED WASTE	
5.0	LABORATORY ANALYTICAL RESULTS	. 6
5.1	INITIAL INVESTIGATION SOIL ANALYTICAL RESULTS.	7
5.1.1	TPH	
5.1.2	SVOCs	
5.1.3	RCRA 8 Metals	
5.1.4		
-	PCBs.	
5.1.5	Organochlorine Pesticides	
5.1.6		. 8
5.2	FOLLOW-UP INVESTIGATION SOIL ANALYTICAL RESULTS	
5.2.1	TPH.	
5.2.2	<u>SVOCs</u>	
5.2.3	RCRA 8 Metals	
5.2.4	<u>PCBs</u>	
5.2.5	Organochlorine Pesticides	10
5.2.6	Dioxin	
5.3	LABORATORY QUALITY CONTROL	11
5.4	FIELD QUALITY CONTROL	11
5.5	PRELIMINARY ENVIRONMENTAL HAZARD EVALUATION - FIELD AREA	
6.0	SUMMARY AND CONCLUSION	13
	<u></u>	
7.0	LIMITATIONS	16

CONTENTS (Continued)

References

Figures

- 1 Site Location Map
- 2 Initial Sample Area
- 3 Decision Unit Area Results Exceeding HDOH Tier 1 EALs

<u>Tables</u>

- 1 Analytical Results for Initial Soil Sample
- 2 Dioxin Toxic Equivalency (TEQ) Calculations for Initial Soil Sample
- 3 Analytical Results for Soil Samples from Decision Unit Areas
- 4 Analytical Results for Replicate Samples
- 5 Statistical Calculations for Replicate Samples

Photographs

Appendices

- A Laboratory Analytical Reports and Chain of Custody Forms (Test America)
- B Laboratory Analytical Reports and Chain of Custody Forms (NVL)
- C Laboratory Analytical Reports and Chain of Custody Forms (ESN)
- D Asbestos Disposal Manifest

List of Acronyms

ACM bgs Bureau Veritas COPC DOE DRO DU EALS EHE EHMP EPA ESN HDOH HEER HQ IDW mg/kg mg/L ng/kg NVLAP PCB PLM PCB PLM PCB PLM PPE RCRA RL RPD RCRA RL RPD RCRA RL RPD RCRA RL SOP SPLP SVOCS QA/QC TCDD TEF TEQ TGM TMK TPH TPH-DRO	Asbestos Containing Material below ground surface Bureau Veritas North America, Inc. Constituents of Potential Concern Department of Education Diesel range organics Decision Unit Environmental Action Levels Environmental Hazard Evaluation Environmental Hazard Evaluation Environmental Hazard Evaluation Environmental Hazard Management Plan Environmental Protection Agency Environmental Services Network Pacific, Inc. State of Hawaii Department of Health Hazard Evaluation and Emergency Response Hazard Quotient Investigation Derived Waste milligrams per kilogram National Voluntary Laboratory Accreditation Program Polychlorinated Biphenyls Polarized Light Microscopy Personal Protective Equipment Resource Conservation Recovery Act Reporting Limit Relative Percent Difference Residual Range Organics Relative Standard Deviation Standard Operating Procedure Synthetic Precipitation Leaching Procedure Semi-Volatile Organic Compounds Quality Assurance/Quality Control tetrachlorodibenzo-p-dioxin Toxicity Equivalent Technical Guidance Manual Tax Map Key Total Petroleum Hydrocarbons
TPH	Total Petroleum Hydrocarbons
TPH-DRO	Total Petroleum Hydrocarbons as Diesel Range Organics
TPH-RRO	Total Petroleum Hydrocarbons as Residual Range Organics
UIC	Underground Injection Control
USGS	United States Geological Survey
WHO	World Health Organization

Executive Summary

The State of Hawaii Department of Education (DOE) retained Bureau Veritas North America, Inc. (Bureau Veritas) to collect and analyze soil samples and suspect asbestos materials from the track and field area at Radford High School. This report summarizes the data collected at the property described as being located at 4361 Salt Lake Boulevard, Tax Map Key (TMK) Number (1) 9-9-002: Parcel 023 (hereinafter referred to as the "site").

On December 19, 2013 buried debris was encountered during excavation activities at the track and field area of the site. A topographic map from 1953 depicts the site and adjoining areas as a naval reservation located within Makalapa Crater. The topographic maps from 1959 through 2013 showed the site as a built-up area; labeled "Radford High School". The encountered buried debris is assumed to be associated with the site's former use as a military reservation, which may have included a former military dumpsite.

The purpose of this investigation was to assess the presence and magnitude of the soil contamination within the track construction area and associated soil stockpiles.

On December 20, 2013, after the discovery of buried debris, Bureau Veritas responded onsite to collect one multi-increment soil sample and six suspect Asbestos Containing Material (ACM) samples. Two types of suspect ACM, an off-white fibrous material with debris and an off-white/brown fibrous material with debris, were observed. Three samples of each type of suspect ACM were collected and sent to NVL Laboratories, Inc., a National Voluntary Laboratory Accreditation Program (NVLAP) laboratory located in Seattle, Washington. The samples were analyzed for asbestos content utilizing Polarized Light Microscopy (PLM) analysis. The three samples of the first type of suspect ACM (off-white fibrous material with debris) tested positive for asbestos with 51% to 55% Chrysotile. The three samples of the second type of suspect ACM (off-white/brown fibrous material with debris) did not test positive for asbestos. After the samples were collected, MEI personnel covered the buried debris with geofabric. The asbestos was subsequently bagged and stored in a locked storage area. On February 11, 2014, Unitek arrived onsite and double bagged five bags of ACM, which were subsequently properly disposed.

The multi-increment soil sample was a representative sample collected from one decision unit (RHS-01), that was established on the northeastern portion of the site, where buried debris was uncovered. The sample was collected to assess the soil in the track area surrounding the buried debris. The soil sample was analyzed for Total Petroleum Hydrocarbons as Diesel Range Organics (TPH-DRO), Total Petroleum Hydrocarbons as Residual Range Organics (TPH-RRO), Semi-Volatile Organic Compounds (SVOCs), Resource Conservation and Recovery Act (RCRA) 8 Metals, polychlorinated biphenyls (PCBs), Organochlorine Pesticides, and dioxin. Analysis of the soil sample indicated that the soil concentrations of arsenic, cadmium, lead and dioxin exceeded their respective Hawaii Department of Health (HDOH) Tier 1 Environmental Action Levels (EALs). Further sampling and analysis were recommended to delineate the extent of the soil contamination.

A scope of work was prepared, submitted, and approved by the State of Hawaii Department of Health (HDOH) prior to conducting a follow-up investigation. On February 4 and 5, 2014, a follow-up soil investigation was conducted by Bureau Veritas. To facilitate the additional investigation, the site was divided into the following three areas of concern: (1) the excavated track area, (2) the soil stockpiles, and (3) the grassy/original field area. Each of the areas of concern was further divided into DUs based on visual contamination and size. A total of 29 DUs (RHS-DU-1 through RHS-DU-29) were established across the site to facilitate the collection of multi-increment soil samples from the surface soil layer in each DU.

One multi-increment surface soil sample was collected from each DU for a total of 29 samples. Three sets of replicate samples were also collected from three DUs selected to represent each of the three areas of concern. The samples were submitted to Environmental Services Network Pacific (ESN) Analytical Laboratory located in Honolulu, Hawaii for analytical testing and were analyzed for the following:

- TPH-DRO using Environmental Protection Agency (EPA) Method 8015B.
- TPH-RRO using EPA Method 8015B
- SVOCs using EPA Method 8270C
- RCRA 8 Metals using EPA Methods 6010B and 7471
- PCBs using EPA Method 8082
- Organochlorine Pesticides using EPA Method 8081A
- Dioxin using EPA Method 8290

TPH-DRO and TPH-RRO were not detected in the 29 soil samples at concentrations greater than the laboratory reporting limits.

One SVOC analyte, benzo(a)pyrene, was detected at concentrations that equaled or exceeded the HDOH Tier 1 EAL. In three of the 29 samples, benzo(a)pyrene concentrations that ranged between 0.15 and 0.43 milligrams per kilogram (mg/kg) were equal to or exceeded the HDOH Tier 1 EAL for benzo(a)pyrene of 0.15 mg/kg.

Five of the eight RCRA metals, arsenic, barium, cadmium, lead, and mercury, were detected at concentrations that exceeded their respective HDOH Tier 1 EALs. Arsenic was detected in seven of the 29 samples at concentrations ranging from 24 to 35 mg/kg, which were equal to or exceeded the HDOH Tier 1 EAL for arsenic of 24 mg/kg. Barium was detected in one of the samples at a concentration of 1,200 mg/kg, which exceeded the HDOH Tier 1 EAL for barium of 1,000 mg/kg. Cadmium was detected in one of the samples at a concentration of 14 mg/kg, which was equal to the HDOH Tier 1 EAL for cadmium of 14 mg/kg. Lead was detected in 15 of the samples at concentrations ranging from 240 to 6,200 mg/kg, which exceeded the HDOH Tier 1 EAL for lead of 200 mg/kg. Mercury was detected in 22 of the samples at concentrations ranging from 4.8 to 200 mg/kg, which exceeded the HDOH Tier 1 EAL for mercury of 4.7 mg/kg.

Organochlorine pesticides were not detected in the 29 samples at concentrations greater than the laboratory reporting limits.

One PCB, Aroclor 1260, was detected in five of the 29 samples at concentrations that exceeded the HDOH Tier 1 EAL. The concentrations of the PCB Aroclor 1260 ranged from 1.19 to 3.27 mg/kg, which exceeded the HDOH Tier 1 EAL for PCBs of 1.1 mg/kg.

Dioxin was detected in six of the 29 soil samples with Toxicity Equivalent (TEQ) concentrations above the HDOH Tier 1 EAL of 240 nanograms per kilogram (ng/kg) ranging from 290 ng/kg to 710 ng/kg. The concentrations in these six soil samples, RHS-DU-1, RHS-DU-2, RHS-DU-9, RHS-DU-13, RHS-DU-18, and RHS-DU-19, indicated soils within those DUs are categorized as HDOH Soil Management Category C. According to HDOH guidance (2012), Soil Management Category C soils should be restricted to commercial/industrial land use with a formal restriction to the deed against sensitive land uses (e.g., residential, schools, etc.) in the absence of significant institutional and engineered control and HDOH approval. In addition, an Environmental Hazard Management Plan (EHMP) is required if soil is left on site for long-term management.

Project No. 17012-012148.00/Task 48

It should be noted that a replicate sample collected from one DU (RHS-DU-1) contained a Dioxin TEQ concentration of 2,900 ng/kg indicating soil from that DU may fall into the HDOH Soil Management Category D. HDOH guidance (2012) indicates that Soil Management Category D soils require remedial action under any land use scenario in order to reduce potential exposure and adverse health risks.

A preliminary Environmental Hazard Evaluation (EHE) was prepared for the field area of the site because of the potential for exposures to student athletes competing on the grassy/original field area. Based on the analytical laboratory results of the multi-increment surface soil samples collected from the four field area DUs, one contaminant, mercury, was detected in one of the four DUs, RHS-DU-29, at a concentration exceeding the HDOH Tier 1 EALs. The surface soil sample collected from RHS-DU-29 contained a mercury concentration of 5.1 mg/kg, which exceeded the HDOH Tier 1 EAL for mercury of 4.7 mg/kg. The surface soil samples from the remaining three field area DUs did not contain COPC concentrations exceeding the HDOH Tier 1 EALs.

The HDOH Tier 1 EAL for mercury is the direct contact EAL for residential sites, which is conservatively based on a noncarcinogen Hazard Quotient (HQ) of 0.2 to be protective of cumulative health risks potentially posed by sites with multiple noncarcinogens (up to a total of five). However, soil in RHS-DU-29 contained only one noncarcinogen at a concentration exceeding its HDOH Tier 1 EAL. As such, the direct contact EAL calculated using a HQ of 1.0 of 23 mg/kg may be used (see Table I-1 of the Technical Guidance Manual [TGM], HDOH, 2012). The mercury concentration of 5.1 mg/kg measured in RHS-DU-29 does not exceed the direct contact HDOH EAL for residential sites for mercury calculated using a HQ of 1.0 of 23 mg/kg. In other words, mercury surface soil concentrations measured in RHS-DU-29 are not expected to pose a risk for noncancer health effects assuming the strictest exposure parameters (i.e., residential).

Based on the laboratory analytical results, Bureau Veritas recommends the following:

- The stockpile DUs (RHS-DU-14 through RHD-DU-25) should be profiled and properly disposed.
- Conduct an additional site characterization investigation to further delineate the horizontal extent of contamination and the vertical extent of contamination.
- After the additional site characterization is conducted, an EHE should be prepared to assess the potential environmental hazards posed by the soil contamination.
- Develop remedial alternatives based on the results of the EHE.

1.0 INTRODUCTION AND PURPOSE

The State of Hawaii Department of Education (DOE) retained Bureau Veritas North America, Inc. (Bureau Veritas) to collect and analyze soil samples and suspect asbestos materials from the track and field area of Radford High School. This report summarizes the data collected at the property described as being located at 4361 Salt Lake Boulevard, Tax Map Key (TMK) Number (1) 9-9-002: Parcel 023 (hereinafter referred to as the "site"). A site location map is presented as Figure 1, located behind the Figures tab.

On December 19, 2013 buried debris was encountered during excavation activities of the track and field area of the site. A topographic map from 1953 depicts the site and adjoining areas as a naval reservation located within Makalapa Crater. The topographic maps from 1959 through 2013 showed the site as a built-up area; labeled "Radford High School". The encountered buried debris is assumed to be associated with the site's former use as a military reservation, which may have included a former military dumpsite.

The purpose of this investigation was to assess the presence and magnitude of the soil contamination within the track construction area and associated soil stockpiles.

2.0 BACKGROUND

2.1 SITE DESCRIPTION

The site is located on the northwestern corner of a portion of TMK Number: (1) 9-9-002: Parcel 023 in a residential area of Honolulu, Hawaii. The site consists of approximately 25 acres of land located approximately one mile from Pearl Harbor. The site was developed as Radford High School by the State of Hawaii in 1957. The initial sampling area is presented as Figure 2.

2.1.1 Soil Conditions

The U.S. Department of Agriculture Soil Conservation Service (Foote, et al., 1972) classifies the soil within the area of the site as Makalapa clay, 2 to 6 percent slopes. This series consists of well-drained soils on uplands on the island of Oahu, near Salt Lake Crater, Diamond Head, and the Mokapu Peninsula. These soils formed in volcanic tuff. They are gently sloping to moderately steep. Elevations range from 20 to 200 feet. The annual rainfall amounts to 20 to 35 inches.

2.1.2 Groundwater Conditions

Bureau Veritas reviewed the Aquifer Identification and Classification for Oahu: Groundwater Protection Strategy for Hawaii (Mink, J.F. and L.S. Lau, 1990), published by the Water Resources Research Center at the University of Hawaii, for information on groundwater conditions below the subject property. The report describes the upper and lower aquifers below the site as part of the Waimalu aquifer system of the Pearl Harbor sector, on the island of Oahu.

The upper aquifer is an unconfined basal aquifer of the sedimentary type, occurring in non-volcanic lithology. Its status is described as an irreplaceable, low (250-1,000 milligrams per liter [mg/L] Chloride) water supply. It is considered a currently used ecologically important water source, and has a high vulnerability to contamination.

Project No. 17012-012 WWW Carrollcox.com 808-782-6627

The lower aquifer is a confined basal aquifer of the dike type, occurring in dike compartments. Its status is described as an irreplaceable, low (250-1,000 mg/L Chloride) water supply, considered a currently used ecologically important water source, and has a moderate vulnerability to contamination.

The site is located above the State of Hawaii Department of Health (HDOH) defined Underground Injection Control (UIC) line. Areas above the UIC line denote potential underground drinking water aquifers. Areas below the UIC line generally denote aquifers that are unsuitable for drinking water purposes. Consequently, the aquifers above the site are considered drinking water aquifers.

The subsurface conditions under the site are interpreted from available data and may vary. Estimated groundwater flow direction is based on topography and nearby water features unless otherwise noted. Topography is not always a reliable basis for predicting groundwater flow direction. The local groundwater gradient under the site may be influenced naturally by tidal influences, zones of higher or lower permeability, or artificially by nearby pumping or recharge, and may deviate from the regional trend.

2.2 HISTORICAL SITE USE

On December 19, 2013 buried debris was encountered during excavation activities of the track and field area of the site. A topographic map from 1953 depicts the site and adjoining areas as a naval reservation located within Makalapa Crater. The topographic maps from 1959 through 2013 showed the site as a built-up area labeled "Radford High School". The encountered buried debris is assumed to be associated with the site's former use as a military reservation, which may have included a former military dumpsite.

2.3 RECENT CONSTRUCTION ACTIVITIES

Buried debris was encountered during recent construction activities involving refurbishing of the track and field area. The track and the end zone areas have been excavated, as well as the long-jump area and drain line within the field. In addition, the soil stockpiles are present onsite associated with the construction activities.

3.0 APPLICABLE ACTION LEVELS

The applicable action levels for this site were established using the HDOH guidance document entitled "Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater" (HDOH, 2012), which is published by the HDOH Hazard Evaluation and Emergency Response (HEER) Office.

The site is located above the HDOH defined UIC line. Consequently, the aquifers below the site are considered drinking water aquifers. Furthermore, the site lies greater than 150 meters from a surface water body. Therefore, the analytical results were compared to the HDOH Tier 1 Environmental Action Levels (EALs) where groundwater is a current or potential source of drinking water and the nearest surface water body is greater than 150 meters from the site (HDOH, 2012; Table A).

4.0 FIELD ACTIVITIES

4.1 INITIAL RESPONSE

On December 20, 2013, Bureau Veritas responded onsite to collect one soil sample and six suspect asbestos containing material (ACM) samples at the site because buried debris had been found by MEI Corporation while excavating the northeastern portion of Radford High Schools track and field.

<u>Asbestos</u>

Two types of suspect ACM, an off-white fibrous material with debris and an off-white/brown fibrous material with debris, were observed. Three samples of each type of suspect ACM were collected and sent to NVL Laboratories, Inc., a National Voluntary Laboratory Accreditation Program (NVLAP) laboratory located in Seattle, Washington. The samples were analyzed for asbestos content utilizing Polarized Light Microscopy (PLM) analysis. The three samples of the first type of suspect ACM (off-white fibrous material with debris) tested positive for asbestos with 51% to 55% Chrysotile. The three samples of the second type of suspect ACM (off-white/brown fibrous material with debris) did not test positive for asbestos. In summary, based on the laboratory results, one buried material (off-white fibrous material with debris) was confirmed as ACM (containing greater than [>] 1% asbestos).

The two types of suspect ACM are presented in the table below. Laboratory results for the suspect ACM samples collected during Bureau Veritas' site visit are presented in Appendix B.

Material Description	Material Location	Concentration
Off-white fibrous material with debris (3 Samples)	Northeastern corner of track and field area.	51% to 55% Chrysotile
Off-white/brown fibrous material with debris (3 Samples)	Northeastern corner of track and field area.	None Detected

Summary of Suspect ACM Sample Collection Information

After the samples were collected, MEI personnel covered the buried debris with geofabric. The asbestos was subsequently bagged and stored in a locked storage area. On February 11, 2014, Unitek arrived onsite and double bagged five bags of ACM, which were subsequently properly disposed. The waste disposal manifest is presented in Appendix D.

<u>Soil</u>

Also on December 20, 2013, Bureau Veritas collected one multi-increment soil sample, comprised of 30 sub-samples during potholing activities along the northeastern corner of the track and field area. The multi-increment soil sample was a representative sample collected from one decision unit (DU), RHS-01, that was established on the northeastern portion of the site, where buried debris was uncovered. The boundary of RHS-01 is shown on Figure 2, located behind the *Figures* tab. The sample was collected to assess the soil in the surrounding track area. The soil sample was analyzed for the following Chemicals of Potential Concern (COPC): Total Petroleum Hydrocarbons as Diesel Range Organics (TPH-DRO), TPH as Residual Range Organics (TPH-RRO), Semi-Volatile Organic Compounds (SVOCs), Resource Conservation and Recovery Act (RCRA) 8 Metals, polychlorinated biphenyls (PCBs), Organochlorine Pesticides, and dioxins.

Analysis of the soil sample reported that the concentrations of arsenic, cadmium, lead and dioxin exceeded their respective HDOH Tier 1 EALs. Further sampling and analysis were recommended to assess the extent of the soil contamination within the track construction area.

4.2 INVESTIGATION PLANNING

Following HDOH guidance (HDOH, 2013), a multi-increment soil sampling approach was selected for this site investigation. The HDOH defines a DU as a portion of a site where a decision is to be made regarding the extent and magnitude of contaminants identified within the unit, as well as the potential environmental hazards posed by the contaminants. A scope of work was prepared, submitted, and approved by HDOH prior to conducting a follow-up investigation.

To facilitate the additional investigation, the site was divided into the following three main areas of concern: (1) the excavated track area, (2) the soil stockpiles, and (3) the grassy/original field area. Each of the areas of concern was further divided into DUs based on visual contamination and size. A total of 29 DUs (RHS-DU-1 through RHS-DU-29) were established across the site to facilitate the collection of multi-increment soil samples from the surface soil layers in each DU. The boundaries of each DU are shown on Figure 3, located behind the *Figures* tab.

4.3 SOIL SAMPLING ACTIVITIES

On February 4 and 5, 2014, Bureau Veritas collected multi-increment surface soil samples from the 29 DUs established at the site. Soil samples were collected using a soil sampling probe that was advanced approximately six inches into the soil. Each increment consisted of approximately one to two ounces of soil. A total of 50 increments were collected using a systematic random approach across each DU. The increments were placed in a new, plastic Ziploc[™] plastic bag. The soil coring device was decontaminated using Alconox[™] cleaner and double rinsed with distilled water prior to collecting the sample.

The sample container was labeled and placed into a cooler with wet-ice to begin the preservation process during delivery to the laboratory. The sample was logged on a chain-of-custody form, which accompanied the sample to the laboratory. Three sets of replicate soil samples were also collected, one set from each area of concern, and analyzed (see Section 4.4).

A summary of the primary soil samples is presented in the following table:

-				
Sample ID	DU	Date/Time Sample Collected	Sample Interval (bgs)	Description of Sample Location
RHS-DU-1	DU1	2-4-14/1525	0 to 0.5 feet	Eastern portion of the track
RHS-DU-2	DU2	2-4-14/1500	0 to 0.5 feet	Eastern portion of the track
RHS-DU-3	DU3	2-4-14/1403	0 to 0.5 feet	Eastern portion of the track
RHS-DU-4	DU4	2-4-14/1145	0 to 0.5 feet	Southern portion of the track
RHS-DU-5	DU5	2-4-14/1220	0 to 0.5 feet	Southern portion of the track
RHS-DU-6	DU6	2-4-14/1402	0 to 0.5 feet	Southern portion of the track
RHS-DU-7	DU7	2-4-14/1131	0 to 0.5 feet	Southern portion of the track
RHS-DU-8	DU8	2-4-14/1424	0 to 0.5 feet	Western portion of the track
RHS-DU-9	DU9	2-4-14/1455	0 to 0.5 feet	Western portion of the track
RHS-DU-10	DU10	2-5-14/0915	0 to 0.5 feet	Northern portion of the track
RHS-DU-11	DU11	2-5-14/0900	0 to 0.5 feet	Northern portion of the track

Summary of Primary Soil Samples

Project No. 17012-012 WWW 4 Carrollcox.com 808-782-6627

Sample ID	DU	Date/Time Sample Collected	Sample Interval (bgs)	Description of Sample Location
RHS-DU-12	DU12	2-5-14/0945	0 to 0.5 feet	Northern portion of the track
RHS-DU-13	DU13	2-5-14/0945	0 to 0.5 feet	Northern portion of the track
RHS-DU-14	DU14	2-4-14/1252	0 to 0.5 feet	Northern soil stockpile
RHS-DU-15	DU15	2-4-14/1345	0 to 0.5 feet	Northern soil stockpile
RHS-DU-16	DU16	2-4-14/1411	0 to 0.5 feet	Northern soil stockpile
RHS-DU-17	DU17	2-4-14/1436	0 to 0.5 feet	North of end zone soil stockpile
RHS-DU-18	DU18	2-4-14/1300	0 to 0.5 feet	North of end zone soil stockpile
RHS-DU-19	DU19	2-4-14/1422	0 to 0.5 feet	North of end zone soil stockpile
RHS-DU-20	DU20	2-4-14/1146	0 to 0.5 feet	End zone soil stockpile
RHS-DU-21	DU21	2-4-14/1226	0 to 0.5 feet	End zone soil stockpile
RHS-DU-22	DU22	2-4-14/1015	0 to 0.5 feet	Western soil stockpile
RHS-DU-23	DU23	2-4-14/1023	0 to 0.5 feet	Western soil stockpile
RHS-DU-24	DU24	2-4-14/1050	0 to 0.5 feet	Southern soil stockpile
RHS-DU-25	DU25	2-4-14/1115	0 to 0.5 feet	Southern soil stockpile
RHS-DU-26	DU26	2-4-14/1020	0 to 0.5 feet	Northern portion of the field
RHS-DU-27	DU27	2-4-14/1000	0 to 0.5 feet	Eastern portion of the field
RHS-DU-28	DU28	2-4-14/1007	0 to 0.5 feet	Western portion of the field
RHS-DU-29	DU29	2-4-14/0945	0 to 0.5 feet	Southern portion of the field

4.4 FIELD REPLICATE SAMPLING

Field Quality Assurance/Quality Control (QA/QC) was performed through the collection of three sets of replicate samples, each consisting of the primary sample and an associated duplicate sample and triplicate sample. The replicate samples were collected from the upper six inches of DU1, DU17 and DU26. A summary of the primary/replicate soil samples is presented in the following table:

Summary of Primary/Replicate Soil Samples

Sample ID	Sample Type	DU	Date/Time Sample Collected	Sample Interval (bgs)	Description of Sample Location
RHS-DU-1	primary	DU1	2-4-14/1525	0 to 0.5 feet	Eastern portion of the track
RHS-DU-1.2	duplicate	DU1	2-5-14/0933	0 to 0.5 feet	Eastern portion of the track
RHS-DU-1.3	triplicate	DU1	2-5-14/1030	0 to 0.5 feet	Eastern portion of the track
RHS-DU-17	primary	DU17	2-4-14/1436	0 to 0.5 feet	North of end zone soil stockpile
RHS-DU-17.2	duplicate	DU17	2-4-14/1449	0 to 0.5 feet	North of end zone soil stockpile
RHS-DU-17.3	triplicate	DU17	2-4-14/1502	0 to 0.5 feet	North of end zone soil stockpile
RHS-DU-26	primary	DU26	2-4-14/1020	0 to 0.5 feet	Northern portion of the field
RHS-DU-26.2	duplicate	DU26	2-4-14/1059	0 to 0.5 feet	Northern portion of the field
RHS-DU-26.3	triplicate	DU26	2-4-14/1145	0 to 0.5 feet	Northern portion of the field

Soil analytical results for the primary and replicate samples are summarized in Table 4, located behind the *Tables* tab.

The data from the replicate samples were used to calculate important statistical measures, including Relative Percent Difference (RPD) and Relative Standard Deviation (RSD). A detailed description of the calculations performed using data from the replicate samples is presented in Section 5.4.

4.5 CHAIN-OF-CUSTODY

Each soil sample was logged on a chain-of-custody form upon collection. The chain-of-custody forms accompanied the samples from the field to the laboratory. Whenever the samples changed hands, the custodian of the samples signed the "relinquished by" section and the receiving person signed the "received by" section. The soil samples were delivered by hand under standard chain-of-custody procedures to TestAmerica and Environmental Services Network (ESN) Pacific Inc.

4.6 DECONTAMINATION PROCEDURES

New disposable gloves were worn by the sampler during the soil sample collection activities. The gloves were disposed of following the collection of a soil sample and new gloves were donned prior to the collection of the following soil sample. Equipment, such as the soil sampling probes and trowels, were decontaminated between sample collections as follows:

- Washed with Alconox[™]
- Double rinsed with distilled water
- Air dried

4.7 INVESTIGATION DERIVED WASTE

The field activities generated different types of investigation derived waste (IDW), including used personal protective equipment (PPE) and disposable equipment (i.e. nitrile gloves, paper towels, etc.).

Used PPE and disposable equipment was sealed in a plastic bag and placed in a municipal refuse dumpster. The used PPE and equipment were not considered hazardous and were sent to a municipal landfill.

5.0 LABORATORY ANALYTICAL RESULTS

The soil samples collected as part of the initial response/investigation were submitted to TestAmerica located in Aiea, Hawaii. The samples collected during the follow-up investigation were submitted to ESN Analytical Laboratories located in Honolulu, Hawaii for analytical testing. The soil samples were submitted to the lab in a cooler containing wet ice. Copies of the Analytical Reports and Chain-of-Custody documents are presented in Appendices A through C. Tables 1 through 5, located behind the *Tables* tab, present the laboratory analytical results for the samples.

The following analyses were performed on the soil samples collected from the site:

- TPH-DRO using Environmental Protection Agency (EPA) Method 8015B.
- TPH-RRO using EPA Method 8015B
- SVOCs using EPA Method 8270C
- RCRA 8 Metals using EPA Methods 6010B and 7471

- PCBs using EPA Method 8082
- Organochlorine Pesticides using EPA Method 8081A
- Dioxin using EPA Method 8290

5.1 INITIAL INVESTIGATION SOIL ANALYTICAL RESULTS

During the initial investigation, one multi-incremental soil sample was collected from one DU (RHS-01). Table 1 summarizes the analytical results of the soil sample and compares the results to the HDOH Tier 1 EALs. The soil sample was obtained from 0 to 0.5 feet below ground surface (bgs).

5.1.1 <u>TPH</u>

TPH-DRO was detected at a concentration of 24 milligrams per kilogram (mg/kg), which was below the HDOH Tier 1 EAL for TPH-DRO of 100 mg/kg. TPH-RRO was detected at a concentration of 23 mg/kg, which was below the HDOH Tier 1 EAL for TPH-RRO of 500 mg/kg.

5.1.2 <u>SVOCs</u>

Four SVOC analytes, 2-methylnaphthalene, benzo[b]fluoranthene, indeno[1,2,3-cd]pyrene, and naphthalene, were detected, but at concentrations less than their respective HDOH Tier 1 EALs. The remaining SVOC analytes were not detected at concentrations greater than the laboratory reporting limits.

5.1.3 RCRA 8 Metals

Three of the eight RCRA metals, arsenic, cadmium, and lead, were detected at concentrations greater than their respective HDOH Tier 1 EALs. Arsenic was detected at a concentration of 43 mg/kg, which was above the HDOH Tier 1 EAL for arsenic of 24 mg/kg. Cadmium was detected at a concentration of 26 mg/kg, which was above the HDOH Tier 1 EAL for cadmium of 14 mg/kg. Lead was detected at a concentration of 5,300 mg/kg, which was above the HDOH Tier 1 EAL for lead of 200 mg/kg.

Four of the eight RCRA metals, barium, chromium, silver, and mercury, were detected, but at concentrations below their respective HDOH Tier 1 EALs. Barium was detected at a concentration of 940 mg/kg, which was below the HDOH Tier 1 EAL for barium of 1,000 mg/kg. Chromium was detected at a concentration of 210 mg/kg, which was below the HDOH Tier 1 EAL for chromium of 1,100 mg/kg. Silver was detected at a concentration of 14 mg/kg, which was below the HDOH Tier 1 EAL for silver of 78 mg/kg. Mercury was detected at a concentration of 1.1 mg/kg, which was below the HDOH Tier 1 EAL for mercury of 4.7 mg/kg.

Selenium was not detected at a concentration greater than the laboratory reporting limit.

5.1.4 <u>PCBs</u>

The PCB Aroclor 1260 was detected at a concentration of 0.094 mg/kg, which was below the HDOH Tier 1 EAL for PCBs of 1.1 mg/kg.

5.1.5 Organochlorine Pesticides

Five organochlorine pesticide analytes, DDE, DDT, dieldrin, endrin, and endrin aldehyde, were detected, but at concentrations less than their respective HDOH Tier 1 EALs. The remaining organochlorine pesticide analytes were not detected at concentrations greater than the laboratory reporting limits.

5.1.6 <u>Dioxin</u>

The term dioxin is used to refer to a family of chlorinated compounds with similar chemical structures and mechanisms of toxicity, referred to as "congeners." Because the various dioxins/furans congeners are not equally toxic, concentrations are reported relative to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (2, 3, 7, 8-TCDD) referred to as the Dioxin Toxicity Equivalent (TEQ) concentration.

For the calculations of the Dioxin TEQ concentrations, the 2005 World Health Organization (WHO) toxicity equivalence factors (TEFs) were used (Van den Berg, et. al, 2006). The Dioxin TEQ calculations are presented in Table 2, located behind the *Tables* tab.

The HDOH published the document titled "Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater," dated Fall 2011 (HDOH, 2012). The technical memorandum indicates that the Tier 1EAL for Dioxin TEQ is 240 ng/kg.

The HDOH document also provides a Summary of TEQ Dioxin Soil Action Levels and associated management categories. An abbreviated version of the Summary is shown in the Table below.

Soil Management Category	TEQ	Recommended Action
А	Less than 20 ng/kg	Background. Within range of expected background conditions in non- agricultural and non-industrial areas. No further action required and no restrictions on land use.
В	Between 20 ng/kg and 240 ng/kg	Minimally Impacted. Exceeds expected background conditions but within range anticipated for agricultural fields. Potential health risks considered insignificant. Include Category B soil in remedial actions for more heavily contaminated spill areas as practicable in order to reduce exposure (e.g., outer margins of pesticide mixing areas).
С	Between 240 ng/kg and 1,500 ng/kg	Moderately impacted. Typical of incinerator ash, burn pits, wood treatment operations that used pentachlorophenol, and the margins of heavily impacted, pesticide mixing areas associated with former sugarcane operations that used pentachlorophenol. Restriction to commercial/industrial land use required with a formal restriction to the deed against sensitive land uses (e.g., residential, schools, etc.) in the absence of significant institutional and engineered control and HDOH approval. Environmental Hazard Management Plan (EHMP) required if soil left on site for long-term management. This includes controls to ensure no off-site dispersion (e.g., dust or surface runoff) or inadvertent excavation and reuse at properties with sensitive land uses.
D	Greater than 1,500 ng/kg	Heavily Impacted. Typical of former pesticide mixing areas that used pentachlorophenol. Remedial actions required under any land use scenario in order to reduce potential exposure. Potentially adverse health risks under both sensitive and commercial/industrial land use scenarios in the absence of significant institutional and/or engineered controls.

Summary of TEQ Dioxin Soil Action Levels and Associated Management Categories

Sample RHS-01 had a TEQ dioxin concentration of 2,019 ng/kg, which exceeded the HDOH Tier 1 EAL for both unrestricted use (240 ng/kg) and commercial/industrial use (1,500 ng/kg). Following HDOH guidance (2012), the calculated TEQ Dioxin soil concentration is within the HDOH TEQ Dioxin Soil Management Category D (Heavily Impacted). The Guidance indicates that remedial actions are required for Category D soils under any land use scenario in order to reduce potential exposure.

5.2 FOLLOW-UP INVESTIGATION SOIL ANALYTICAL RESULTS

A total of 29 primary, multi-increment, surface soil samples were collected (i.e., one soil sample from each DU) during the follow-up investigation. Replicate multi-increment, surface soil samples were also collected from three DUs (i.e., one DU representing each of the three areas of concern: the track, the field, and the soil stockpile areas). Samples were obtained from the upper 6-inches of soil. Table 3, summarizes the analytical results of the soil samples and compares the results to the HDOH Tier 1 EALs.

5.2.1 <u>TPH</u>

TPH-DRO and TPH-RRO were not detected in the 29 soil samples at concentrations greater than the laboratory reporting limits.

5.2.2 <u>SVOCs</u>

One SVOC analyte, benzo(a)pyrene, was detected at concentrations that equaled or exceeded the HDOH Tier 1 EAL. In three of the 29 samples, benzo(a)pyrene concentrations that ranged between 0.15 and 0.43 mg/kg were equal to or exceeded the HDOH Tier 1 EAL for benzo(a)pyrene of 0.15 mg/kg.

Seven SVOC analytes, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, fluoranthene, phenanthrene, and pyrene, were detected in one or more of the 29 samples, but at concentrations below their respective HDOH Tier 1 EALs.

The remaining SVOCs analytes were not detected at concentrations greater than the laboratory reporting limits.

5.2.3 RCRA 8 Metals

Five of the eight RCRA metals, arsenic, barium, cadmium, lead, and mercury, were detected at concentrations that exceeded their respective HDOH Tier 1 EALs. Arsenic was detected in seven of the 29 samples at concentrations ranging from 24 to 35 mg/kg, which were equal to or exceeded the HDOH Tier 1 EAL for arsenic of 24 mg/kg. Barium was detected in one of the samples at a concentration of 1,200 mg/kg, which exceeded the HDOH Tier 1 EAL for barium of 1,000 mg/kg. Cadmium was detected in one of the samples at a concentration of 14 mg/kg, which was equal to the HDOH Tier 1 EAL for cadmium of 14 mg/kg. Lead was detected in 15 of the samples at concentrations ranging from 240 to 6,200 mg/kg, which exceeded the HDOH Tier 1 EAL for lead of 200 mg/kg. Mercury was detected in 22 of the samples at concentrations ranging from 4.8 to 200 mg/kg, which exceeded the HDOH Tier 1 EAL for mercury of 4.7 mg/kg.

Chromium was detected in all of the 29 samples, but at concentrations below the HDOH Tier 1 EAL for chromium of 1,100 mg/kg. Selenium and silver were not detected in the 29 samples at concentrations greater than the laboratory reporting limits.

5.2.4 <u>PCBs</u>

One PCB, Aroclor 1260, was detected in five of the 29 samples at concentrations that exceeded the HDOH Tier 1 EAL. The concentrations of the PCB Aroclor 1260 ranged from 1.19 to 3.27 mg/kg, which exceeded the HDOH Tier 1 EAL for PCBs of 1.1 mg/kg. The remaining PCB Aroclors were not detected at concentrations greater than the laboratory reporting limits.

5.2.5 Organochlorine Pesticides

Seven of the organochlorine pesticides analytes, alpha-chlordane, gamma-chlordane, chlordane (technical), dieldrin, endosulfan II, DDE, and DDT, were detected in one or more of the soil samples, but at concentrations less than their respective HDOH Tier 1 EALs. The remaining organochlorine pesticides were not detected at concentrations greater than the laboratory reporting limits.

5.2.6 <u>Dioxin</u>

The Dioxin TEQ calculations were performed by the analytical laboratory and are presented within the laboratory analytical reports (see Appendix C). The analytical laboratory calculated the Dioxin TEQs following three different approaches (i.e., a lower bound, a medium bound, and an upper bound). The medium bound approach used one-half the laboratory detection limit as a proxy concentration for the congeners that were not detected. The medium bound approach followed the approach recommended by the HDOH (HDOH, 2012). As such, the medium bound Dioxin TEQ concentrations were used for comparison to the HDOH action levels (see Table 3).

Dioxin was detected in 6 of the 29 soil samples with TEQ concentrations above the HDOH TEQ Dioxin SAL of 240 ng/kg ranging from 290 ng/kg to 710 ng/kg. Dioxin TEQ concentrations in the remaining 23 samples did not exceed the HDOH Tier EAL of 240 ng/kg. The concentrations in these six soil samples, RHS-DU-1, RHS-DU-2, RHS-DU-9, RHS-DU-13, RHS-DU-18, and RHS-DU-19, indicated soils within those DUs are categorized as HDOH Soil Management Category C. According to HDOH guidance (2012), Soil Management Category C soils should be restricted to commercial/industrial land use with a formal restriction to the deed against sensitive land uses (e.g., residential, schools, etc.) in the absence of significant institutional and engineered control and HDOH approval. In addition, an Environmental Hazard Management Plan (EHMP) is required if soil is left on site for long-term management.

It should be noted that a replicate sample collected from one DU (RHS-DU-1) contained a Dioxin TEQ concentration of 2,900 ng/kg indicating soil from that DU may fall into the HDOH Soil Management Category D. HDOH guidance (2012) indicates that Soil Management Category D soils require remedial action under any land use scenario in order to reduce potential exposure and adverse health risks.

Six of the samples, RHS-DU-20, RHS-DU-21, RHS-DU-23, RHS-DU-24, RHS-DU-25, and RHS-DU-28, had Dioxin TEQ concentrations less than 20 ng/kg, indicating those six DUs had Dioxin TEQ concentrations that are within the range of expected background conditions in non-agricultural and non-industrial areas (HDOH Soil Management Category A). No further actions are required and no restrictions on land use are necessary for HDOH Soil Management Category A soils.

The remaining 17 samples had Dioxin TEQ concentrations greater than 20 ng/kg, but less than 240 ng/kg indicating those 17 DUs had Dioxin TEQ concentrations that exceeded expected background conditions but are within the range anticipated for agricultural fields (HDOH Soil Management Category B): RHS-DU-3, RHS-DU-4, RHS-DU-5, RHS-DU-6, RHS-DU-7, RHS-DU-8, RHS-DU-10, RHS-DU-11, RHS-DU-12, RHS-DU-14, RHS-DU-15, RHS-DU-16, RHS-DU17, RHS-DU-22, RHS-DU-26, RHS-DU-27, and RHS-DU-29. Potential health risks are considered insignificant for HDOH Soil Management Category B soils.

5.3 LABORATORY QUALITY CONTROL

The soil sample collected during the initial investigation was submitted to TestAmerica Analytical Laboratory in Aiea, Oahu, Hawaii for laboratory analysis. The soil samples collected as part of the followup investigation were submitted to ESN Analytical Laboratory in Honolulu, Oahu, Hawaii for laboratory analysis. Analytical data were generated following EPA methods (SW-846 protocols), laboratory standard operating procedures (SOP), and QA/QC guidelines for sample analysis. Common laboratory QC checks include the use of Method Blank, Matrix Spike and Matrix Spike Duplicate, and Laboratory Control Duplicate samples.

Adequate reporting levels of the chemicals of concern are dependent on the sample matrix, naturally occurring background concentrations, and laboratory instrumentation. For some of the constituents, the laboratory reporting limits were greater than the HDOH Tier 1 EALs. As stated in the HDOH guidance document (HDOH, 2012), laboratory reporting limits of chemicals were not directly considered in development of the HDOH EALs, and therefore, some standards are not able to be achieved through standard laboratory analysis. In these cases, it is generally acceptable to consider the reporting limit in place of the screening level.

5.4 FIELD QUALITY CONTROL

Field QA/QC was performed through the collection of three sets of replicate samples consisting of the primary sample and an associated duplicate and triplicate sample. The table below lists sample identification numbers for the primary samples and the associated duplicate and triplicate samples.

Primary Sample Identification Number	Associated Duplicate (Dup) and Triplicate (Trip) Sample Identification Number
RHS-DU-1	RHS-DU-1.2 and RHS-DU-1.3
RHS-DU-17	RHS-DU-17.2 and RHS-DU-17.3
RHS-DU-26	RHS-DU-26.2 and RHS-DU-26.3

Duplicate and Triplicate Sample Identification

The statistical summaries were calculated for all chemical constituents with detected concentrations in the primary, duplicate, and triplicate samples and are presented in Table 5. For some analytes, the statistical calculations could not be performed because the analyte was not detected above laboratory reporting limits in one or more of the samples (i.e., primary, duplicate, or triplicate sample). In these cases, the RPD and RSD calculations were not performed.

Relative Percent Difference

The RPD, expressed as a percent, is a measure of precision between two sample values (the primary sample and the duplicate sample as well as the primary sample and the triplicate sample).

The RPD is calculated as the positive difference between two measurements (primary and duplicate; primary and triplicate) divided by the average of the two measured values and multiplied by 100. Typically, if the RPD is less than or equal to 35%, then the quality of the data is acceptable. The goal for this investigation was 35% or less.

Standard Deviation and Relative Standard Deviation

The standard deviation is a statistical measure of the scatter, or variability, of several sample values around their average. The lower the standard deviation, the lower the variability of the sample values observed in the data.

The RSD, expressed as a percent, is a measure of precision between several sample values (the primary, duplicate, and triplicate samples). The RSD differs from the RPD in that it measures the precision between several sample values versus just two sample values. The RSD is calculated as the standard deviation divided by the mean (average). The RSD is useful for comparing the uncertainty between different measurements. Typically, if the RSD is less than or equal to 35%, then the quality of the data is acceptable. The goal for this investigation was 35% or less.

RHS-DU-1

The RPDs and RSDs for the duplicate and triplicate samples of sample RHS-DU-1 exhibited moderate to significant variability. The calculated RPDs comparing the primary and the duplicate sample for dioxin, arsenic, barium, cadmium, chromium, and lead met the goal of less than 35%. The calculated RPD comparing the primary and duplicate sample for mercury was greater than 35%.

The calculated RPDs comparing the primary and the triplicate sample for arsenic, barium and chromium met the goal of less than 35%. The calculated RPDs comparing the primary and the triplicate sample for dioxin, cadmium, lead and mercury were greater than 35%.

The calculated RSDs for arsenic, barium, and chromium met the goal of less than 35%. The calculated RSDs for dioxin, cadmium, lead, and mercury were greater than 35%.

<u>RHS-DU-17</u>

The RPDs and RSDs for the duplicate and triplicate samples of sample RHS-DU-17 exhibited moderate to significant variability. The calculated RPDs comparing the primary and the duplicate sample for dioxin, arsenic, barium, cadmium, chromium, mercury, chrysene, fluoranthene, pyrene, Aroclor 1260 (PCB), and DDT met the goal of less than 35%. The calculated RPD comparing the primary and duplicate sample for lead was greater than 35%.

The calculated RPDs comparing the primary and the triplicate sample for dioxin, arsenic, barium, cadmium, chromium, mercury, Aroclor 1260 (PCB), and DDT met the goal of less than 35%. The calculated RPDs comparing the primary and the triplicate sample for lead, chrysene, fluoranthene, and pyrene were greater than 35%.

The calculated RSDs for dioxin, arsenic, barium, cadmium, chromium, lead, mercury, Aroclor 1260 (PCB), and DDT met the goal of less than 35%. The calculated RSDs for chrysene, fluoranthene, and pyrene were greater than 35%.

<u>RHS-DU-26</u>

The RPDs and RSDs for the duplicate and triplicate samples of sample RHS-DU-26 exhibited moderate to significant variability. The calculated RPDs comparing the primary and the duplicate sample for chromium and mercury met the goal of less than 35%. The calculated RPDs comparing the primary and duplicate sample for dioxin, barium, and lead were greater than 35%.

The calculated RPDs comparing the primary and the triplicate sample for barium, chromium, lead, and mercury met the goal of less than 35%. The calculated RPD comparing the primary and the triplicate sample for dioxin was greater than 35%.

The calculated RSDs for dioxin, arsenic, barium, chromium, lead, and mercury met the goal of less than 35%.

Summary

The RPDs and RSDs that exceeded the goal of 35% are likely the result of heterogeneous distribution of the contaminants in the soil column and to some degree variability in the sample collection process. Alternatives to reducing the variability may be applicable, such as reducing the area of each DU investigated. Overall, the data quality appears to be sufficient for decision making purposes.

5.5 PRELIMINARY ENVIRONMENTAL HAZARD EVALUATION - FIELD AREA

A preliminary Environmental Hazard Evaluation (EHE) was prepared for the field area of the site because of the potential for exposures to student athletes competing on the grassy/original field area. The field area was divided into four DUs (i.e., RHS-DU-26, RHS-DU-27, RHS-DU-28, and RHS-DU-29) as shown in Figure 3. Based on the analytical laboratory results of the multi-increment surface soil samples collected from the four field area DUs, one contaminant, mercury, was detected in one of the four DUs, RHS-DU-29, at a concentration exceeding the HDOH Tier 1 EALs. The surface soil sample collected from RHS-DU-29 contained a mercury concentration of 5.1 mg/kg, which exceeded the HDOH Tier 1 EAL for mercury of 4.7 mg/kg. The surface soil samples from the remaining three field area DUs did not contain COPC concentrations exceeding the HDOH Tier 1 EALs.

The HDOH Tier 1 EAL for mercury is the direct contact EAL for residential sites, which is conservatively based on a noncarcinogen Hazard Quotient (HQ) of 0.2 to be protective of cumulative health risks potentially posed by sites with multiple noncarcinogens (up to a total of five). However, soil in RHS-DU-29 contained only one noncarcinogen at a concentration exceeding its HDOH Tier 1 EAL. As such, the direct contact EAL calculated using a HQ of 1.0 of 23 mg/kg may be used (see Table I-1 of the Technical Guidance Manual [TGM], HDOH, 2012). The mercury concentration of 5.1 mg/kg measured in RHS-DU-29 does not exceed the direct contact HDOH EAL for residential sites for mercury calculated using a HQ of 1.0 of 23 mg/kg. In other words, mercury surface soil concentrations measured in RHS-DU-29 are not expected to pose a risk for noncancer health effects assuming the strictest exposure parameters (i.e., residential).

6.0 SUMMARY AND CONCLUSION

Buried debris was discovered during excavation activities of the track and field areas, which is assumed to be associated with the site's former use as a military reservation and possibly a military dumpsite. The purpose of this investigation was to assess the presence and magnitude of the soil contamination within the track construction area and associated soil stockpiles.

On December 20, 2013, after the discovery of buried debris, Bureau Veritas responded onsite to collect one multi-increment soil sample and six suspect ACM samples. Two types of suspect ACM, an off-white fibrous material with debris and an off-white/brown fibrous material with debris, were observed. Three samples of each type of suspect ACM were collected and sent to NVL Laboratories, Inc., a NVLAP laboratory located in Seattle, Washington. The samples were analyzed for asbestos content utilizing PLM analysis. The three samples of the first type of suspect ACM (off-white fibrous material with debris) tested positive for asbestos with 51% to 55% Chrysotile. The three samples of the second type of suspect ACM (off-white/brown fibrous material with debris) did not test positive for asbestos. After the samples were collected, MEI personnel covered the buried debris with geofabric. The asbestos was subsequently

Project No. 17012-012 WWW 4 Carrollcox. com 808-782-6627

bagged and stored in a locked storage area. On February 11, 2014, Unitek arrived onsite and double bagged five bags of ACM, which were subsequently properly disposed.

The multi-increment soil sample was a representative sample collected from one decision unit (RHS-01), that was established on the northeastern portion of the site, where buried material was uncovered. The sample was collected to assess the soil in the track area surrounding the buried debris. The soil sample was analyzed for TPH-DRO, THP-RRO, SVOCs, RCRA 8 Metals, PCBs, Organochlorine Pesticides, and dioxin. Analysis of the soil sample indicated that the soil concentrations of arsenic, cadmium, lead and dioxin exceeded their respective HDOH Tier 1 EALs. Further sampling and analysis was recommended to delineate the extent of the soil contamination.

A scope of work was prepared, submitted, and approved by HDOH prior to conducting a follow-up investigation. On February 4 and 5, 2014, a follow-up soil investigation was conducted by Bureau Veritas. To facilitate the additional investigation, the site was divided into the following three areas of concern: (1) the excavated track area, (2) the soil stockpiles, and (3) the grassy/original field area. Each of the areas of concern was further divided into DUs based on visual contamination and size. A total of 29 DUs (RHS-DU-1 through RHS-DU-29) were established across the site to facilitate the collection of multi-increment soil samples from the surface soil layer in each DU.

One multi-increment surface soil sample was collected from each DU for a total of 29 samples. Three sets of replicate samples were also collected from three DUs selected to represent each of the three areas of concern. The samples were submitted to ESN Analytical Laboratory located in Honolulu, Hawaii for analytical testing and were analyzed for the following:

- TPH-DRO using EPA Method 8015B.
- TPH-RRO using EPA Method 8015B
- SVOCs using EPA Method 8270C
- RCRA 8 Metals using EPA Methods 6010B and 7471
- PCBs using EPA Method 8082
- Organochlorine Pesticides using EPA Method 8081A
- Dioxin using EPA Method 8290

TPH-DRO and TPH-RRO were not detected in the 29 soil samples at concentrations greater than the laboratory reporting limits.

One SVOC analyte, benzo(a)pyrene, was detected at concentrations that equaled or exceeded the HDOH Tier 1 EAL. In three of the 29 samples, benzo(a)pyrene concentrations that ranged between 0.15 and 0.43 mg/kg were equal to or exceeded the HDOH Tier 1 EAL for benzo(a)pyrene of 0.15 mg/kg.

Five of the eight RCRA metals, arsenic, barium, cadmium, lead, and mercury, were detected at concentrations that exceeded their respective HDOH Tier 1 EALs. Arsenic was detected in seven of the 29 samples at concentrations ranging from 24 to 35 mg/kg, which were equal to or exceeded the HDOH Tier 1 EAL for arsenic of 24 mg/kg. Barium was detected in one of the samples at a concentration of 1,200 mg/kg, which exceeded the HDOH Tier 1 EAL for barium of 1,000 mg/kg. Cadmium was detected in one of the samples at a concentration of 14 mg/kg, which was equal to the HDOH Tier 1 EAL for cadmium of 14 mg/kg. Lead was detected in 15 of the samples at concentrations ranging from 240 to 6,200 mg/kg, which exceeded the HDOH Tier 1 EAL for lead of 200 mg/kg. Mercury was detected in 22 of the samples at concentrations ranging from 4.8 to 200 mg/kg, which exceeded the HDOH Tier 1 EAL for mercury of 4.7 mg/kg.

Organochlorine pesticides were not detected in the 29 samples at concentrations greater than the laboratory reporting limits.

One PCB, Aroclor 1260, was detected in five of the 29 samples at concentrations that exceeded the HDOH Tier 1 EAL. The concentrations of the PCB Aroclor 1260 ranged from 1.19 to 3.27 mg/kg, which exceeded the HDOH Tier 1 EAL for PCBs of 1.1 mg/kg.

Dioxin was detected in six of the 29 soil samples with TEQ concentrations above the HDOH Tier 1 EAL of 240 ng/kg ranging from 290 ng/kg to 710 ng/kg. The concentrations in these six soil samples, RHS-DU-1, RHS-DU-2, RHS-DU-9, RHS-DU-13, RHS-DU-18, and RHS-DU-19, indicated soils within those DUs are categorized as HDOH Soil Management Category C. According to HDOH guidance (2012), Soil Management Category C soils should be restricted to commercial/industrial land use with a formal restriction to the deed against sensitive land uses (e.g., residential, schools, etc.) in the absence of significant institutional and engineered control and HDOH approval. In addition, an Environmental Hazard Management Plan (EHMP) is required if soil is left on site for long-term management.

It should be noted that a replicate sample collected from one DU (RHS-DU-1) contained a Dioxin TEQ concentration of 2,900 ng/kg indicating soil from that DU may fall into the HDOH Soil Management Category D. HDOH guidance (2012) indicates that Soil Management Category D soils require remedial action under any land use scenario in order to reduce potential exposure and adverse health risks.

A preliminary Environmental Hazard Evaluation (EHE) was prepared for the field area of the site because of the potential for exposures to student athletes competing on the grassy/original field area. Based on the analytical laboratory results of the multi-increment surface soil samples collected from the four field area DUs, one contaminant, mercury, was detected in one of the four DUs, RHS-DU-29, at a concentration exceeding the HDOH Tier 1 EALs. The surface soil sample collected from RHS-DU-29 contained a mercury concentration of 5.1 mg/kg, which exceeded the HDOH Tier 1 EAL for mercury of 4.7 mg/kg. The surface soil samples from the remaining three field area DUs did not contain COPC concentrations exceeding the HDOH Tier 1 EALs.

The HDOH Tier 1 EAL for mercury is the direct contact EAL for residential sites, which is conservatively based on a noncarcinogen Hazard Quotient (HQ) of 0.2 to be protective of cumulative health risks potentially posed by sites with multiple noncarcinogens (up to a total of five). However, soil in RHS-DU-29 contained only one noncarcinogen at a concentration exceeding its HDOH Tier 1 EAL. As such, the direct contact EAL calculated using a HQ of 1.0 of 23 mg/kg may be used (see Table I-1 of the Technical Guidance Manual [TGM], HDOH, 2012). The mercury concentration of 5.1 mg/kg measured in RHS-DU-29 does not exceed the direct contact HDOH EAL for residential sites for mercury calculated using a HQ of 1.0 of 23 mg/kg. In other words, mercury surface soil concentrations measured in RHS-DU-29 are not expected to pose a risk for noncancer health effects assuming the strictest exposure parameters (i.e., residential).

Based on the laboratory analytical results, Bureau Veritas recommends the following:

- The stockpile DUs (RHS-DU-14 through RHD-DU-25) should be profiled and properly disposed.
- Conduct an additional site characterization investigation to further delineate the horizontal extent of contamination and the vertical extent of contamination.

- After the additional site characterization is conducted, an EHE should be prepared to assess the potential environmental hazards posed by the soil contamination.
- Develop remedial alternatives based on the results of the EHE.

7.0 LIMITATIONS

This report is for the exclusive use of the State of Hawaii Department of Education and no other party shall have any right to rely on any service provided by Bureau Veritas without prior written consent. The information and opinions expressed in this report are given in response to a limited assignment and should be considered and implemented only in light of that assignment. The services provided by Bureau Veritas in completing this project were consistent with normal standards of the profession. No other warranty, expressed or implied, is made. Bureau Veritas will not distribute or publish this report without consent except as required by law or court order.

This report prepared by: Ken Gomes Staff Scientist Environmental, Health, and Safety Manetta This report prepared by: Marietta Canty, M.S. Senior Environmental Engineer Health, Safety, and Environmental Services

This report reviewed by:

Daniel P. Ford, P.G. Regional Vice President Health, Safety, and Environmental Services

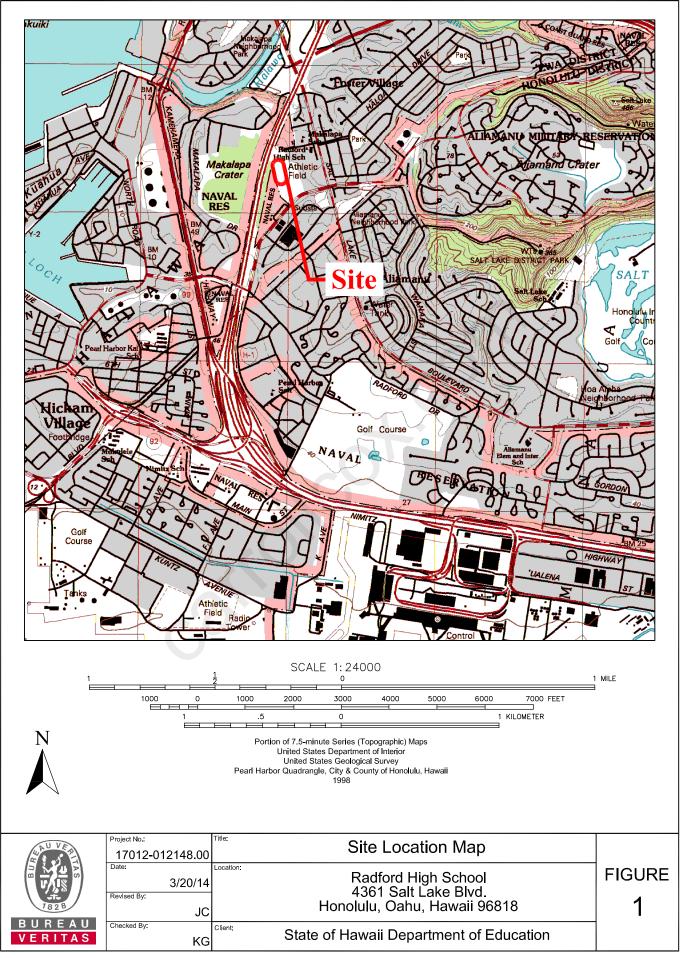
REFERENCES

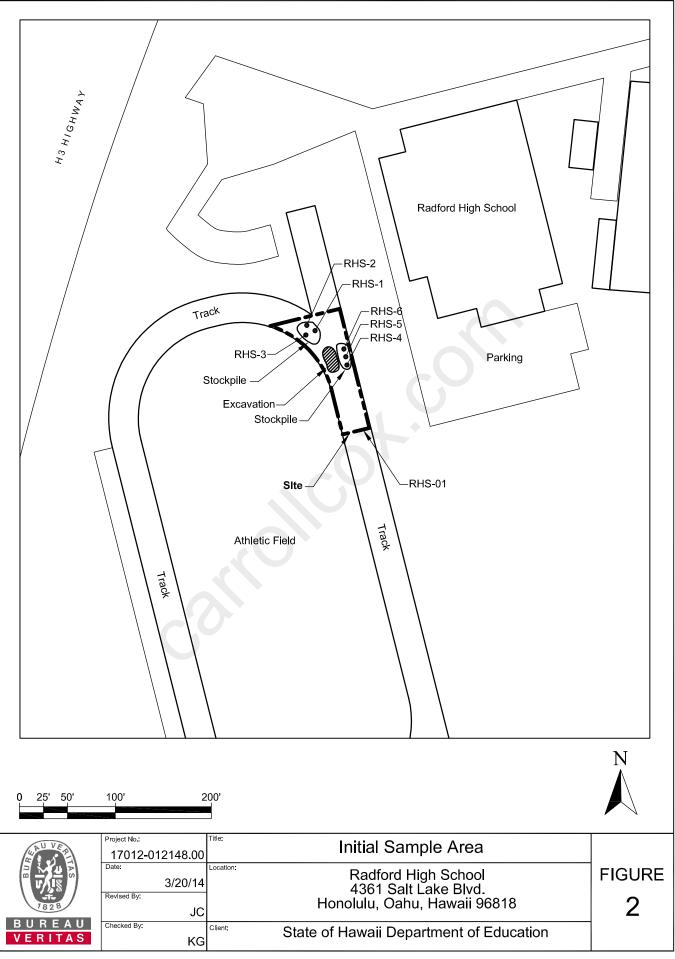
REFERENCES

Foote, D.E. et al. 1972. Soil Survey of Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii. U.S. Department of Agriculture, Soil Conservation Service, in cooperation with the University of Hawaii Agricultural Experiment Station. Washington: GPO.

Hawaii State Department of Health (HDOH), 1984. Pearl Harbor Quadrangle, Hawaii. 7.5 Minute Series (Topographic) Map with Underground Injection Control Line Program Overlay. Prepared by the Underground Injection Control Line Program. July.

HDOH, 2012. Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater, Volumes I and II, prepared by the Hazard Evaluation & Emergency Response (HEER) Office. Fall 2011 (Updated January 2012).


HDOH, 2013. *Technical Guidance Manual for the Implementation of the Hawaii State Contingency Plan.* Prepared by the Hazard Evaluation and Emergency Response Office. (Interim Final), March.


Mink J., and Lau, S., 1990. Aquifer Identification and Classification for Oahu: Groundwater Protection Strategy for Hawaii (Technical Report No. 179). Water Resources Research Center at the University of Hawaii. February.

United States Department of the Interior Geological Survey (USGS). 2013. 7.5 Minute Topographic Map, Pearl Harbor, Hawaii Quadrangle with Hawaii Department of Land and Natural Resources

Van den Berg, M., Birnbaum, L.S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., Peterson, R.E.; 2006. Review: The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. Toxicological Sciences 93(2), 223-241.

Table 1Analytical Results for Initial Soil SampleState of Hawaii Department of EducationRadford High School Track and Field InvestigationHonolulu, Oahu, Hawaii

Project No: 17012-012148.00 / Task 048

Sample ID:	RHS-01	HDOH				
Date Sampled:	12/20/2013	Tier 1				
Analytes Units:	mg/kg	EAL				
Total Petroleum Hydrocarbons (TPH) / EPA Method 8015B						
TPH-Diesel Range Organics	24	100				
TPH-Residual Range Organics	23	500				
Total Metals / EPA Method 6010B/7471						
Arsenic	43*	24				
Barium	940	1,000				
Cadmium	26*	14				
Chromium	210	1,100				
Lead	5,300*	200				
Selenium	ND< 10	78				
Silver	14	78				
Mercury	1.1	4.7				
Semi-volatile Organic Compounds (SVOCs) / EP	A Method 8270C					
1,2,4-Trichlorobenzene	ND< 0.69	0.098				
1,2-Dichlorobenzene	ND< 0.69	0.75				
1,3-Dichlorobenzene	ND< 0.69	0.57				
1,4-Dichlorobenzene	ND< 0.69	0.047				
1-Methylnaphthalene	ND< 0.73	1.8				
2,4,5-Trichlorophenol	ND< 0.69	29				
2,4,6-Trichlorophenol	ND< 0.69	1.8				
2,4-Dichlorophenol	ND< 0.69	0.025				
2,4-Dimethylphenol	ND< 0.69	9.9				
2,4-Dinitrophenol	ND< 1.4	5.6				
2,4-Dinitrotoluene	ND< 0.69	0.021				
2,6-Dinitrotoluene	ND< 0.69	3.6				
2-Chloronaphthalene	ND< 0.69	NS				
2-Chlorophenol	ND< 0.69	0.0092				
2-Methylnaphthalene	0.25	4.1				
2-Methylphenol	ND< 0.69	NS				
2-Nitroaniline	ND< 0.69	NS				
2-Nitrophenol	ND< 0.69	NS				
3,3'-Dichlorobenzidine	ND< 1.7	0.079				
3 & 4 Methylphenol	ND< 0.69	NS				
3-Nitroaniline	ND< 0.69	NS				
4,6-Dinitro-2-methylphenol	ND< 0.88	NS				
4-Bromophenyl phenyl ether	ND< 0.69	NS				

Notes on page 3

1 of 3

Table 1 (continued)

Total Metals / EPA Method 6010B/7471 (C	Continued)	
4-Chloro-3-methylphenol	ND< 0.69	NS
4-Chloroaniline	ND< 0.69	0.0063
4-Chlorophenyl phenyl ether	ND< 0.69	NS
4-Nitroaniline	ND< 1.7	NS
4-Nitrophenol	ND< 1.7	NS
Acenaphthene	ND< 0.69	120
Acenaphthylene	ND< 0.69	100
Anthracene	ND< 0.69	4.3
Benzo[a]anthracene	ND< 0.69	1.5
Benzo[a]pyrene	ND< 0.69	0.15
Benzo[b]fluoranthene	0.15	1.5
Benzo[g,h,i]perylene	ND< 0.69	35
Benzo[k]fluoranthene	ND< 0.69	15
Benzoic acid	ND< 1.7	NS
Benzyl alcohol	ND< 0.69	NS
Bis(2-chloroisopropyl)ether	ND< 0.69	NS
Bis(2-chloroethoxy)methane	ND< 0.69	NS
Bis(2-chloroethyl)ether	ND< 0.69	0.000064
Bis(2-ethylhexyl) phthalate	ND< 0.69	35
Butyl benzyl phthalate	ND< 0.69	NS
Carbazole	ND< 0.69	NS
Chrysene	ND< 0.69	30
Dibenzo(a,h)anthracene	ND< 0.88	0.15
Dibenzofuran	ND< 0.69	NS
Diethyl phthalate	ND< 0.69	16
Dimethyl phthalate	ND< 0.69	22
Di-n-butyl phthalate	ND< 0.69	NS
Di-n-octyl phthalate	ND< 0.69	NS
Fluoranthene	ND< 0.69	460
Fluorene	ND< 0.69	100
Hexachlorobenzene	ND< 0.69	0.30
Hexachlorobutadiene	ND< 0.69	0.18
Hexachlorocyclopentadiene	ND< 1.7	NS
Hexachloroethane	ND< 0.69	0.27
Indeno[1,2,3-cd]pyrene	0.49	1.5
Isophorone	ND< 0.69	0.77
Naphthalene	2.7	4.4
Nitrobenzene	ND< 0.69	0.0046
N-Nitrosodi-n-propylamine	ND< 0.52	NS
N-Nitrosodiphenylamine	ND< 0.69	NS
Pentachlorophenol	ND< 1.7	0.82
Phenanthrene	ND< 0.69	440
Phenol	ND< 0.69	0.16
Pyrene	ND< 0.69	44

Notes on page 3

2 of 3

Table 1 (continued)

	henyls (PCBs) / EPA			
PCB-1016		ND< 0.026	1.1	
PCB-1221		ND< 0.026	1.1	
PCB-1232		ND< 0.026	1.1	
PCB-1242		ND< 0.026	1.1	
PCB-1248		ND< 0.026	1.1	
PCB-1254		ND< 0.026	1.1	
PCB-1260		0.094	1.1	
Organochlorine Pes	ticides / EPA Method	8081A		
p,p'-DDD		ND< 0.0026	2.0	
o,p'-DDE		0.0046	1.4	
o,p'-DDT		0.0045	1.7	
Aldrin		ND< 0.0026	0.92	
Ipha-BHC		ND< 0.0026	NS	
eta-BHC		ND< 0.0026	NS	
lelta-BHC		ND< 0.0052	NS	
Chlordane (technical)		ND< 0.026	16	
Dieldrin		0.0035	1.5	
Endosulfan I		ND< 0.0026	18	
Endosulfan II		ND< 0.0026	NS	
ndosulfan sulfate		ND< 0.0052	NS	
Indrin		0.00086	3.7	
Endrin aldehyde		0.0035	NS	
Endrin ketone		ND< 0.0026	NS	
amma-BHC (Lindane	e)	ND< 0.0026	0.075	
leptachlor		ND< 0.0026	0.11	
Heptachlor epoxide		ND< 0.0026	0.053	
<i>Methoxychlor</i>		ND< 0.0026	16	
oxaphene		ND< 0.10	0.44	
Dioxins and Furans	/ EPA Method 8290			
EQ		0.00201939*	0.00024	
<u>Votes:</u> 3old* 1DOH Tier 1 EAL talics	The value exceeds the State of Hawaii Department of Health (HDOH) Tier 1 Environmental Action Levels (EAL) for unrestricted land use. The State of Hawaii Department of Health (HDOH) Tier 1 Environmental Action Levels (EAL) for sites where groundwater is a current or potential source of drinking water, and the site is greater than 150 meters from a surface water body. (Fall 2011, updated January 2012). Reporting Limit is above the HDOH Tier 1 EAL. milligrams per kilogram			
ng/kg ID< IS EQ	 milligrams per kilogram. No detectable concentration. The number following the "less than" symbol is the laboratory reporting limit. No standard. The HDOH has not established a Tier 1 EAL for this analyte. Toxic equivalency. Calculating the total TEQ of a mixture involves multiplying the concentrations of individual congeners by their respective TEF, then adding the individual TEQ's to obtain a total TEQ concentration for the mixture. 			

3 of 3

Table 2Dioxin Toxic Equivalency (TEQ) Calculations for Initial Soil Sample
State of Hawaii Department of Education
Radford High School Track and Field Investigation
Honolulu, Oahu, Hawaii

Project No: 17012-012148.00 / Task 048

	RHS-01			
			Analytical	TEF Adjusted
			Results	Conc.
PCDD/F Ana	lytes	TEF	(pg/g)	(pg/g)
2,3,7,8-TCDI		1	88	88.0
1,2,3,7,8-Pe0	CDD	1	340	340.00
1,2,3,4,7,8-H	xCDD	0.1	250	25.00
1,2,3,6,7,8-H	xCDD	0.1	420	42.00
1,2,3,7,8,9-H	xCDD	0.1	320	32.00
1,2,3,4,6,7,8-	HpCDD	0.01	2,400	24.0
OCDD		0.0003	5,600	1.68
2,3,7,8-TCDF	-	0.1	1,400	140.00
1,2,3,7,8-Pe0	CDF	0.03	1,100	33.000
2,3,4,7,8-Pe0	CDF	0.3	2,300	690.00
1,2,3,4,7,8-H	xCDF	0.1	1,900	190.00
1,2,3,6,7,8-H	xCDF	0.1	1,400	140.00
1,2,3,7,8,9-H	xCDF	0.1	ND<100	5.00
2,3,4,6,7,8-H	xCDF	0.1	1,900	190.00
1,2,3,4,6,7,8-	HpCDF	0.01	7,600	76.00
1,2,3,4,7,8,9-	HpCDF	0.01	220	2.200
OCDF		0.0003	1,700	0.510
Total TEQ (n	ig/kg)			2,019.39
Notes:				
ND<				ratory Reporting Limit (RL)
ng/kg			alent to parts per trillion	
TEF			F is the ratio of the toxic	
TEQ			two most toxic compou	nas. re involves multiplying the
IEQ			igeners by their respectiv	
			al TEQ concentration for	
HxCDD	Hexachlorodiben			
HxCDF	Hexachlorodibenzofuran			
OCDD	Octachlorodibenzo-p-dioxin			
OCDF	Octachlorodibenzofuran			
PCDD Pentachlorodibenzo-p-dioxin				
PCDF	Pentachlorodiber			
pg/g	Picograms per lite		uadrillion [ppq])	
TCDD	Tetrachlorodiben			
TCDF	Tetrachlorodiben	zoruran		

1 of 1

Table 3Analytical Results for Soil Samples from Decision Unit AreasState of Hawaii Department of EducationRadford High School Track and Field InvestigationHonolulu, Oahu, Hawaii

Project No: 17012-012148.00 / Task 048

Sampl		RHS-DU-2	RHS-DU-3	RHS-DU-4	RHS-DU-5	RHS-DU-6	RHS-DU-7	RHS-DU-8	HDOH Tier 1
Date Sam		2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	EAL
Analytes L	Jnits: mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dioxin / EPA Method 8290									
Total Dioxin Toxic Equivalent (TEQ) □] 710 *	290*	25	35	33	63	110	160	240 🗆
Fotal Petroleum Hydrocarbons (TP	H) / EPA Method 8015B						-	-	-
TPH-Diesel Range Organics	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	500
PH-Residual Range Organics	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	500
otal Metals / EPA Method 6010B/7	471								
Arsenic	35*	11	6.0	7.5	6.1	7.6	7.3	6.8	24
Barium	1,200*	550	410	460	280	200	280	320	1,000
Cadmium	14*	5.9	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	1.0	1.3	14
Chromium	300	150	160	170	180	240	230	170	1,100
₋ead	4,800*	1,600*	85	140	61	66	190	260*	200
Selenium	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	78
Silver	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	78
Aercury	5.2*	15*	5.7*	3.5	2.9	3.3	6.1*	21*	4.7
Polychlorinated Biphenyls (PCBs)	EPA Method 8082								
PCB-1016	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	1.1
PCB-1221	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	1.1
PCB-1232	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	1.1
PCB-1242	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	1.1
PCB-1248	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	1.1
PCB-1254	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	1.1
PCB-1260	ND< 0.05	0.10	0.21	ND< 0.05	0.05	ND< 0.05	0.09	0.17	1.1
Semi-volatile Organic Compounds	(SVOCs) / EPA Method 8	270C							
1,2,4-Trichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.098
,2-Dichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.75
,2-Dinitrobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
,3-Dichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.57
,3-Dinotrobenzene	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
I,4-Dichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.047
,4-Dinitrobenzene	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
-Methylnapthalene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	1.8
2,3,4,6-Tetrachlorophenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	4.9
2,3,5,6-Tetrachlorophenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
2,4,5-Trichlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	29
2,4,6-Trichlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	1.8

Notes on page 13

Table 3 (Continued)

Sample		RHS-DU-2	RHS-DU-3	RHS-DU-4	RHS-DU-5	RHS-DU-6	RHS-DU-7	RHS-DU-8	HDOH Tier 1
Date Sample	ed: 2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	EAL
Analytes Uni	its: mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
SVOCs (Continued)									
2,4-Dichlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	0.025
2,4-Dimethylphenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	9.9
2,4-Dinitrophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	5.6
2,4-Dinitrotoluene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.021
2,6-Dinitrotoluene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	3.6
2-Chloronaphthalene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
2-Chlorophenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.0092
2-Methylnapthalene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	4.1
2-Methylphenol (o-cresol)	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
2-Nitroaniline	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
2-Nitrophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
3,4-Methylphenol (m,p-cresol)	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
4-Bromophenylphenylether	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
4-Chloro-3-methylphenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
4-Chloroaniline	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	0.0063
4-Chlorophenylphenylether	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
4-Nitroaniline	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
4-Nitrophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
Acenaphthene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	120
Acenaphthylene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	100
Aniline	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Anthracene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	4.3
Azobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Benzo(a)anthracene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	0.11	1.5
Benzo(a)pyrene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	0.15
Benzo(b)fluoranthene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	0.12	1.5
Benzo(ghi)perylene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	35
Benzo(k)fluoranthene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	0.20	15
Benzyl alcohol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Bis (2-chloroethoxy) methane	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Bis (2-chloroethyl) ether	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.000064
Bis (2-chloroisopropyl) ether	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	0.0035
Bis (2-ethylhexyl) phthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	35
Bis(2-ethylhexyl) adipate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Butylbenzylphthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Carbazole	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Chrysene	ND< 0.1	ND< 0.1	0.13	0.12	ND< 0.1	0.20	0.19	0.34	30
Dibenzo(a,h)anthracene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	0.15
Dibenzofuran	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Diethylphthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	16
Dimethylphthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	22
Notes on page 13									

Notes on page 13

Sample ID Date Sampled		RHS-DU-2 2/4/2014	RHS-DU-3 2/4/2014	RHS-DU-4 2/4/2014	RHS-DU-5 2/4/2014	RHS-DU-6 2/4/2014	RHS-DU-7 2/4/2014	RHS-DU-8 2/4/2014	HDOH Tier 1 EAL
•									
Analytes Units: SVOCs (Continued)	: mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Di-n-butylphthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Di-n-octyl phthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Fluoranthene	ND< 1.0	0.12	0.12	ND< 1.0	ND< 1.0	0.17	0.21	0.43	460
Fluorene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	100
Hexachlorobenzene	ND< 0.1	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 0.1	ND< 1.0	0.3
Hexachlorobutadiene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.18
Hexachlorocyclopentadiene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Hexacholorethane	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.27
Indeno(1,2,3-cd)pyrene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 1.0	1.5
Isophorone	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.77
Naphthalene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	4.4
Nitrobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.0046
N-Nitroso-di-n-propylamine	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
N-nitrosodiphenylamine	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Pentachlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	0.82
Phenanthrene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	0.12	440
Phenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.16
Pyrene	ND< 0.1	0.15	0.14	0.10	ND< 0.1	0.17	0.23	0.42	44
Pyridine	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Organochlorine Pesticides / EPA Metho		ND 110	112 11.0		ND 110		110 1.0		
Aldrin	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	0.92
Alpha-BHC	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	NS
Alpha-Chlordane	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	NS
Beta-BHC	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	NS
Chlordane (technical)	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	16
Delta-BHC	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	NS
Dieldrin	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	0.017	0.045	1.5
Endosulfan I	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	18
Endosulfan II	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	NS
Endosulfan sulfate	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	NS
Endrin	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	3.7
Endrin aldehyde	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	NS
Endrin ketone	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	NS
Gamma-BHC (Lindane)	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	0.075
Gamma-Chlordane	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	NS
Heptachlor	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	0.11
Heptachlor epoxide	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	0.053
Methoxychlor	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	16
o,p'-DDD	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	2
p,p'-DDE	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	0.010	ND< 0.010	1.4
o,p'-DDT	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	0.011	1.7
Toxaphene	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	0.44

Notes on page 13

Sample ID:	RHS-DU-9	RHS-DU-10	RHS-DU-11	RHS-DU-12	RHS-DU-13	RHS-DU-14	RHS-DU-15	HDOH Tier 1
Date Sampled:	2/4/2014	2/5/2014	2/5/2014	2/5/2014	2/5/2014	2/4/2014	2/4/2014	EAL
Analytes Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dioxin / EPA Method 8290								
Total Dioxin Toxic Equivalent (TEQ)	290*	110	220	230	380*	61	110	240 🗆
Total Petroleum Hydrocarbons (TPH) / E	PA Method 8015B							
TPH-Diesel Range Organics	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	500
TPH-Residual Range Organics	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	500
Total Metals / EPA Method 6010B/7471								
Arsenic	8.7	12	19	23	19	12	15	24
Barium	320	370	522	670	740	260	270	1,000
Cadmium	1.6	1.7	3.7	7.1	6.8	ND< 1.0	1.4	14
Chromium	110	180	200	210	240	220	190	1,100
Lead	660*	490*	1,000*	1,300*	2,800*	240*	360*	200
Selenium	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	78
Silver	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	78
Mercury	18*	23*	68*	57*	-23*	8.2*	14*	4.7
Polychlorinated Biphenyls (PCBs) / EPA	Method 8082							
PCB-1016	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	1.1
PCB-1221	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	1.1
PCB-1232	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	1.1
PCB-1242	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	1.1
PCB-1248	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	1.1
PCB-1254	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	1.1
PCB-1260	0.32	0.66	3.27*	2.17*	1.00	0.13	0.23	1.1
Semi-volatile Organic Compounds (SVC	Cs) / EPA Method 8	270C						
1,2,4-Trichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.098
1,2-Dichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.75
1,2-Dinitrobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
1,3-Dichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.57
1,3-Dinotrobenzene	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
1,4-Dichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.047
1,4-Dinitrobenzene	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
1-Methylnapthalene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	1.8
2,3,4,6-Tetrachlorophenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	4.9
2,3,5,6-Tetrachlorophenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
2,4,5-Trichlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	29
2,4,6-Trichlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	1.8
2,4-Dichlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	0.025
2,4-Dimethylphenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	9.9
2,4-Dinitrophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	5.6
2,4-Dinitrotoluene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.021
2,6-Dinitrotoluene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	3.6

Notes on page 13

Sample ID:	RHS-DU-9	RHS-DU-10	RHS-DU-11	RHS-DU-12	RHS-DU-13	RHS-DU-14	RHS-DU-15	HDOH Tier 1
Date Sampled:	2/4/2014	2/5/2014	2/5/2014	2/5/2014	2/5/2014	2/4/2014	2/4/2014	EAL
Analytes Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
SVOCs (Continued)								
2-Chloronaphthalene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
2-Chlorophenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.0092
2-Methylnapthalene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	4.1
2-Methylphenol (o-cresol)	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
2-Nitroaniline	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
2-Nitrophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
3,4-Methylphenol (m,p-cresol)	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
4-Bromophenylphenylether	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
4-Chloro-3-methylphenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
4-Chloroaniline	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	0.0063
4-Chlorophenylphenylether	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
4-Nitroaniline	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
4-Nitrophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
Acenaphthene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	120
Acenaphthylene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	100
Aniline	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Anthracene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	4.3
Azobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Benzo(a)anthracene	0.26	ND< 0.1	1.5					
Benzo(a)pyrene	0.17*	ND< 0.1	0.15					
Benzo(b)fluoranthene	0.33	ND< 0.1	1.5					
Benzo(ghi)perylene	0.35	ND< 0.1	35					
Benzo(k)fluoranthene	0.35	ND< 0.1	15					
Benzyl alcohol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Bis (2-chloroethoxy) methane	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Bis (2-chloroethyl) ether	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.000064
Bis (2-chloroisopropyl) ether	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	0.0035
Bis (2-ethylhexyl) phthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	35
Bis(2-ethylhexyl) adipate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Butylbenzylphthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Carbazole	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Chrysene	0.58	0.14	0.20	0.13	ND< 0.1	ND< 0.1	ND< 0.1	30
Dibenzo(a,h)anthracene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	0.15
Dibenzofuran	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Diethylphthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	16
Dimethylphthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	22
Di-n-butylphthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Di-n-octyl phthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Fluoranthene	0.50	0.16	0.18	0.11	ND< 0.1	ND< 0.1	ND< 0.1	460
Fluorene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	100

Notes on page 13

Sample ID:	RHS-DU-9	RHS-DU-10	RHS-DU-11	RHS-DU-12	RHS-DU-13	RHS-DU-14	RHS-DU-15	HDOH Tier 1
Date Sampled:	2/4/2014	2/5/2014	2/5/2014	2/5/2014	2/5/2014	2/4/2014	2/4/2014	EAL
Analytes Units:	mg/kg							
SVOCs (Continued)								
Hexachlorobenzene	ND< 1.0	0.3						
Hexachlorobutadiene	ND< 1.0	0.18						
Hexachlorocyclopentadiene	ND< 1.0	NS						
Hexacholorethane	ND< 1.0	0.27						
Indeno(1,2,3-cd)pyrene	0.35	ND< 0.1	1.5					
Isophorone	ND< 1.0	0.77						
Naphthalene	ND< 1.0	4.4						
Nitrobenzene	ND< 1.0	0.0046						
N-Nitroso-di-n-propylamine	ND< 1.0	NS						
N-nitrosodiphenylamine	ND< 1.0	NS						
Pentachlorophenol	ND< 5.0	0.82						
Phenanthrene	0.13	ND< 0.1	440					
Phenol	ND< 1.0	0.16						
Pyrene	0.50	0.18	0.23	0.14	ND< 0.1	ND< 0.1	ND< 0.1	44
Pyridine	ND< 1.0	NS						
Organochlorine Pesticides / EPA Metho	d 8081A						•	
Aldrin	ND< 0.005	0.92						
Alpha-BHC	ND< 0.005	NS						
Alpha-Chlordane	ND< 0.005	0.006	ND< 0.005	ND< 0.005	ND< 0.005	0.006	ND< 0.005	NS
Beta-BHC	ND< 0.005	NS						
Chlordane (technical)	ND< 0.050	ND< 0.050	0.113	0.127	ND< 0.050	ND< 0.050	ND< 0.050	16
Delta-BHC	ND< 0.005	NS						
Dieldrin	ND< 0.010	0.027	0.034	ND< 0.010	ND< 0.010	0.014	ND< 0.010	1.5
Endosulfan I	ND< 0.005	18						
Endosulfan II	ND< 0.010	NS						
Endosulfan sulfate	ND< 0.010	NS						
Endrin	ND< 0.010	3.7						
Endrin aldehyde	ND< 0.010	NS						
Endrin ketone	ND< 0.010	NS						
Gamma-BHC (Lindane)	ND< 0.005	0.075						
Gamma-Chlordane	ND< 0.005	0.006	0.024	0.014	0.022	ND< 0.005	ND< 0.005	NS
Heptachlor	ND< 0.005	0.11						
Heptachlor epoxide	ND< 0.005	0.053						
Methoxychlor	ND< 0.010	16						
p,p'-DDD	ND< 0.010	2						
p,p'-DDE	ND< 0.010	ND< 0.010	ND< 0.010	0.036	0.016	0.012	ND< 0.010	1.4
p,p'-DDT	0.021	0.040	0.216	0.174	0.051	0.012	0.021	1.7
Toxaphene	ND< 0.050	0.44						

Notes on page 13

Sample ID:		RHS-DU-17	RHS-DU-18	RHS-DU-19	RHS-DU-20	RHS-DU-21	RHS-DU-22	HDOH Tier 1
Date Sampled:		2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	EAL
Analytes Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dioxin / EPA Method 8290								
Total Dioxin Toxic Equivalent (TEQ) 🗆	44	230	<mark>690*</mark>	540 *	19	18	39	240 🗆
Total Petroleum Hydrocarbons (TPH) / I	EPA Method 8015B							
TPH-Diesel Range Organics	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	500
TPH-Residual Range Organics	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	500
Total Metals / EPA Method 6010B/7471								
Arsenic	5.4	23	<mark>26*</mark>	26*	6.4	18	6.9	24
Barium	220	590	710	610	290	810	320	1,000
Cadmium	ND< 1.0	4.5	11	7.8	ND< 1.0	12	ND< 1.0	14
Chromium	150	210	170	160	190	240	130	1,100
Lead	95	1,100*	6,200*	2,300*	120	2,300*	110	200
Selenium	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	78
Silver	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	78
Mercury	5.0*	73*	45*	45*	18*	20*	18*	4.7
Polychlorinated Biphenyls (PCBs) / EPA	A Method 8082							
PCB-1016	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	1.1
PCB-1221	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	1.1
PCB-1232	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	1.1
PCB-1242	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	1.1
PCB-1248	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	1.1
PCB-1254	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	1.1
PCB-1260	ND< 0.05	2.23*	1.19*	0.47	0.29	0.20	0.25	1.1
Semi-volatile Organic Compounds (SVC	DCs) / EPA Method 82							
1,2,4-Trichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.098
1,2-Dichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.75
1,2-Dinitrobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
1,3-Dichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.57
1,3-Dinotrobenzene	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
1,4-Dichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.047
1,4-Dinitrobenzene	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
1-Methylnapthalene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	1.8
2,3,4,6-Tetrachlorophenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	4.9
2,3,5,6-Tetrachlorophenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
2,4,5-Trichlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	29
2,4,6-Trichlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	1.8
2,4-Dichlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	0.025
2,4-Dimethylphenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	9.9
2,4-Dinitrophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	5.6
2,4-Dinitrotoluene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.021
2,6-Dinitrotoluene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	3.6

Notes on page 13

Sample ID:	RHS-DU-16	RHS-DU-17	RHS-DU-18	RHS-DU-19	RHS-DU-20	RHS-DU-21	RHS-DU-22	HDOH Tier 1
Date Sampled:	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	EAL
Analytes Units:	mg/kg							
SVOCs (Continued)								
2-Chloronaphthalene	ND< 1.0	NS						
2-Chlorophenol	ND< 1.0	0.0092						
2-Methylnapthalene	ND< 1.0	4.1						
2-Methylphenol (o-cresol)	ND< 1.0	NS						
2-Nitroaniline	ND< 5.0	NS						
2-Nitrophenol	ND< 5.0	NS						
3,4-Methylphenol (m,p-cresol)	ND< 1.0	NS						
4-Bromophenylphenylether	ND< 1.0	NS						
4-Chloro-3-methylphenol	ND< 5.0	NS						
4-Chloroaniline	ND< 5.0	0.0063						
4-Chlorophenylphenylether	ND< 1.0	NS						
4-Nitroaniline	ND< 5.0	NS						
4-Nitrophenol	ND< 5.0	NS						
Acenaphthene	ND< 0.1	120						
Acenaphthylene	ND< 0.1	100						
Aniline	ND< 1.0	NS						
Anthracene	ND< 0.1	4.3						
Azobenzene	ND< 1.0	NS						
Benzo(a)anthracene	ND< 0.1	1.5						
Benzo(a)pyrene	ND< 0.1	0.15						
Benzo(b)fluoranthene	ND< 0.1	1.5						
Benzo(ghi)perylene	ND< 0.1	35						
Benzo(k)fluoranthene	ND< 0.1	15						
Benzyl alcohol	ND< 1.0	NS						
Bis (2-chloroethoxy) methane	ND< 1.0	NS						
Bis (2-chloroethyl) ether	ND< 1.0	0.000064						
Bis (2-chloroisopropyl) ether	ND< 5.0	0.0035						
Bis (2-ethylhexyl) phthalate	ND< 1.0	35						
Bis(2-ethylhexyl) adipate	ND< 1.0	NS						
Butylbenzylphthalate	ND< 1.0	NS						
Carbazole	ND< 1.0	NS						
Chrysene	0.10	0.16	0.12	0.11	0.15	0.12	0.40	30
Dibenzo(a,h)anthracene	ND< 0.1	0.15						
Dibenzofuran	ND< 1.0	NS						
Diethylphthalate	ND< 1.0	16						
Dimethylphthalate	ND< 1.0	22						
Di-n-butylphthalate	ND< 1.0	NS						
Di-n-octyl phthalate	ND< 1.0	NS						
Fluoranthene	0.10	0.13	0.11	ND< 0.1	0.22	0.15	0.49	460
Fluorene	ND< 0.1	100						

Notes on page 13

Sample ID:	RHS-DU-16	RHS-DU-17	RHS-DU-18	RHS-DU-19	RHS-DU-20	RHS-DU-21	RHS-DU-22	HDOH Tier 1
Date Sampled:	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	EAL
Analytes Units:	mg/kg							
SVOCs (Continued)								
Hexachlorobenzene	ND< 1.0	0.3						
Hexachlorobutadiene	ND< 1.0	0.18						
Hexachlorocyclopentadiene	ND< 1.0	NS						
Hexacholorethane	ND< 1.0	0.27						
Indeno(1,2,3-cd)pyrene	ND< 0.1	1.5						
Isophorone	ND< 1.0	0.77						
Naphthalene	ND< 1.0	4.4						
Nitrobenzene	ND< 1.0	0.0046						
N-Nitroso-di-n-propylamine	ND< 1.0	NS						
N-nitrosodiphenylamine	ND< 1.0	NS						
Pentachlorophenol	ND< 5.0	0.82						
Phenanthrene	ND< 0.1	0.20	440					
Phenol	ND< 1.0	0.16						
Pyrene	0.10	0.17	0.12	0.12	0.20	0.16	0.41	44
Pyridine	ND< 1.0	NS						
Organochlorine Pesticides / EPA Method	8081A							
Aldrin	ND< 0.005	0.92						
Alpha-BHC	ND< 0.005	NS						
Alpha-Chlordane	ND< 0.005	NS						
Beta-BHC	ND< 0.005	NS						
Chlordane (technical)	0.050	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	16
Delta-BHC	ND< 0.005	NS						
Dieldrin	ND< 0.010	1.5						
Endosulfan I	ND< 0.005	18						
Endosulfan II	ND< 0.010	ND< 0.010	0.054	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	NS
Endosulfan sulfate	ND< 0.010	NS						
Endrin	ND< 0.010	3.7						
Endrin aldehyde	ND< 0.010	NS						
Endrin ketone	ND< 0.010	NS						
Gamma-BHC (Lindane)	ND< 0.005	0.075						
Gamma-Chlordane	ND< 0.005	NS						
Heptachlor	ND< 0.005	0.11						
Heptachlor epoxide	ND< 0.005	0.053						
Methoxychlor	ND< 0.010	16						
p,p'-DDD	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	0.013	ND< 0.010	ND< 0.010	2
p,p'-DDE	ND< 0.010	ND< 0.010	0.030	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	1.4
p,p'-DDT	ND< 0.010	0.164	0.132	0.025	0.019	0.015	0.022	1.7
Toxaphene	ND< 0.050	0.44						

Notes on page 13

Sample ID:	RHS-DU-23	RHS-DU-24	RHS-DU-25	RHS-DU-26	RHS-DU-27	RHS-DU-28	RHS-DU-29	HDOH Tier 1
Date Sampled:	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	EAL
Analytes Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dioxin / EPA Method 8290	10	47						0.40
Total Dioxin Toxic Equivalent (TEQ) D	18	17	20	33	22	14	21	240 🗆
Total Petroleum Hydrocarbons (TPH) / EF								500
TPH-Diesel Range Organics	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	500
TPH-Residual Range Organics	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	500
Total Metals / EPA Method 6010B/7471	10	F 4	5.0	= 0				
Arsenic	18	5.1	5.8	5.3	6.3	4.6	5.7	24
Barium	340	270	280	100	85	91	99	1,000
Cadmium	1.9	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	14
Chromium	150	140	190	250	230	250	270	1,100
Lead	500*	110	120	89	59	44	68	200
Selenium	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	78
Silver	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	78
Mercury	200*	4.8*	4.4	3.5	2.9	3.1	5.1*	4.7
Polychlorinated Biphenyls (PCBs) / EPA								
PCB-1016	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	1.1
PCB-1221	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	1.1
PCB-1232	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	1.1
PCB-1242	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	1.1
PCB-1248	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	1.1
PCB-1254	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	1.1
PCB-1260	1.46*	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	1.1
Semi-volatile Organic Compounds (SVOC	Cs) / EPA Method 82	270C						
1,2,4-Trichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.098
1,2-Dichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.75
1,2-Dinitrobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
1,3-Dichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.57
1,3-Dinotrobenzene	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
1,4-Dichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.047
1,4-Dinitrobenzene	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
1-Methylnapthalene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	1.8
2,3,4,6-Tetrachlorophenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	4.9
2,3,5,6-Tetrachlorophenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
2,4,5-Trichlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	29
2,4,6-Trichlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	1.8
2,4-Dichlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	0.025
2,4-Dimethylphenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	9.9
2,4-Dinitrophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	5.6
2,4-Dinitrotoluene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.021
2,6-Dinitrotoluene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	3.6

Notes on page 13

Sample ID:	RHS-DU-23	RHS-DU-24	RHS-DU-25	RHS-DU-26	RHS-DU-27	RHS-DU-28	RHS-DU-29	HDOH Tier 1
Date Sampled:	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	EAL
Analytes Units:	mg/kg							
SVOCs (Continued)								
2-Chloronaphthalene	ND< 1.0	NS						
2-Chlorophenol	ND< 1.0	0.0092						
2-Methylnapthalene	ND< 1.0	4.1						
2-Methylphenol (o-cresol)	ND< 1.0	NS						
2-Nitroaniline	ND< 5.0	NS						
2-Nitrophenol	ND< 5.0	NS						
3,4-Methylphenol (m,p-cresol)	ND< 1.0	NS						
4-Bromophenylphenylether	ND< 1.0	NS						
4-Chloro-3-methylphenol	ND< 5.0	NS						
4-Chloroaniline	ND< 5.0	0.0063						
4-Chlorophenylphenylether	ND< 1.0	NS						
4-Nitroaniline	ND< 5.0	NS						
4-Nitrophenol	ND< 5.0	NS						
Acenaphthene	ND< 0.1	120						
Acenaphthylene	ND< 0.1	100						
Aniline	ND< 1.0	NS						
Anthracene	ND< 0.1	4.3						
Azobenzene	ND< 1.0	NS						
Benzo(a)anthracene	0.16	ND< 0.1	1.5					
Benzo(a)pyrene	0.15*	ND< 0.1	0.15					
Benzo(b)fluoranthene	0.31	ND< 0.1	1.5					
Benzo(ghi)perylene	0.44	ND< 0.1	35					
Benzo(k)fluoranthene	0.33	ND< 0.1	15					
Benzyl alcohol	ND< 1.0	NS						
Bis (2-chloroethoxy) methane	ND< 1.0	NS						
Bis (2-chloroethyl) ether	ND< 1.0	0.000064						
Bis (2-chloroisopropyl) ether	ND< 5.0	0.0035						
Bis (2-ethylhexyl) phthalate	ND< 1.0	35						
Bis(2-ethylhexyl) adipate	ND< 1.0	NS						
Butylbenzylphthalate	ND< 1.0	NS						
Carbazole	ND< 1.0	NS						
Chrysene	0.48	0.21	0.11	ND< 0.1	ND< 0.1	0.10	0.14	30
Dibenzo(a,h)anthracene	ND< 0.1	0.15						
Dibenzofuran	ND< 1.0	NS						
Diethylphthalate	ND< 1.0	16						
Dimethylphthalate	ND< 1.0	22						
Di-n-butylphthalate	ND< 1.0	NS						
Di-n-octyl phthalate	ND< 1.0	NS						
Fluoranthene	0.49	0.13	0.11	ND< 0.1	ND< 0.1	0.11	0.10	460
Fluorene	ND< 0.1	100						

Notes on page 13

Sample ID:		RHS-DU-24	RHS-DU-25	RHS-DU-26	RHS-DU-27	RHS-DU-28	RHS-DU-29	HDOH Tier 1
Date Sampled:		2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	EAL
Analytes Units:	mg/kg							
SVOCs (Continued)	1	-				-		
Hexachlorobenzene	ND< 1.0	0.3						
Hexachlorobutadiene	ND< 1.0	0.18						
Hexachlorocyclopentadiene	ND< 1.0	NS						
Hexacholorethane	ND< 1.0	0.27						
Indeno(1,2,3-cd)pyrene	0.38	ND< 0.1	1.5					
Isophorone	ND< 1.0	0.77						
Naphthalene	ND< 1.0	4.4						
Nitrobenzene	ND< 1.0	0.0046						
N-Nitroso-di-n-propylamine	ND< 1.0	NS						
N-nitrosodiphenylamine	ND< 1.0	NS						
Pentachlorophenol	ND< 5.0	0.82						
Phenanthrene	0.16	ND< 0.1	440					
Phenol	ND< 1.0	0.16						
Pyrene	0.50	0.14	0.11	ND< 0.1	ND< 0.1	0.10	0.10	44
Pyridine	ND< 1.0	NS						
Organochlorine Pesticides / EPA Metho	d 8081A							-
Aldrin	ND< 0.005	0.92						
Alpha-BHC	ND< 0.005	NS						
Alpha-Chlordane	0.011	ND< 0.005	NS					
Beta-BHC	ND< 0.005	NS						
Chlordane (technical)	0.057	ND< 0.050	16					
Delta-BHC	ND< 0.005	NS						
Dieldrin	0.017	ND< 0.010	1.5					
Endosulfan I	ND< 0.005	18						
Endosulfan II	ND< 0.010	NS						
Endosulfan sulfate	ND< 0.010	NS						
Endrin	ND< 0.010	3.7						
Endrin aldehyde	ND< 0.010	NS						
Endrin ketone	ND< 0.010	NS						
Gamma-BHC (Lindane)	ND< 0.005	0.075						
Gamma-Chlordane	ND< 0.005	NS						
Heptachlor	ND< 0.005	0.11						
Heptachlor epoxide	ND< 0.005	0.053						
Methoxychlor	ND< 0.010	16						
p,p'-DDD	ND< 0.010	2						
p,p'-DDE	0.011	ND< 0.010	1.4					
p,p'-DDT	0.074	ND< 0.010	1.7					
Toxaphene	ND< 0.050	0.44						

Notes on page 13

<u>Notes:</u>	
	Dioxin Toxic Equivalent (TEQ) reported in nanograms per kilogram (not milligrams per kilogram).
Bold*	The value exceeds the State of Hawaii Department of Health (HDOH) Tier 1 Environmental Action Levels (EAL).
HDOH Tier 1 EAL	The State of Hawaii Department of Health (HDOH) Tier 1 Environmental Action Level (EAL) for sites where groundwater is a current or potential source of drinking water, meters from a surface water body. (Fall 2011, updated January 2012).
Italics	Reporting Limit is above the HDOH Tier 1 EAL.
mg/kg	milligrams per kilogram.
ND<	No detectable concentration. The number following the "less than" symbol is the laboratory reporting limit .
NS	No standard. The HDOH has not established a Tier 1 EAL for this analyte.

www.carrollcox.com 808-782-6627

er, and the site is greater than 150

Table 4Analytical Results for Replicate SamplesState of Hawaii Department of EducationRadford High School Track and Field InvestigationHonolulu, Oahu, Hawaii

Project No: 17012-012148.00 / Task 048

Sample ID:	RHS-DU-1	RHS-DU-1.2 ∆	RHS-DU-1.3 ∆	RHS-DU-17	RHS-DU-17.2 ∆	RHS-DU-17.3 ∆	RHS-DU-26	RHS-DU-26.2 Δ	RHS-DU-26.3 ∆	HDOH Tier 1
Date Sampled:	2/4/2014	2/5/2014	2/5/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	EAL
Analytes Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dioxin / EPA Method 8290										
Total Dioxin Toxic Equivalent (TEQ) 🗆	710*	890*	2,900*	230	290*	280*	33	19	20	240 🗆
Total Petroleum Hydrocarbons (TPH) /	EPA Method 801	5B								
TPH-Diesel Range Organics	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	ND< 50	500
TPH-Residual Range Organics	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	ND< 100	500
Total Metals / EPA Method 6010B/7471										
Arsenic	35*	38*	28*	23	24*	26*	5.3	ND< 5.0	6.2	24
Barium	1,200*	1,100*	1,100*	590	720	670	100	69	85	1,000
Cadmium	14*	14*	26*	4.5	4.6	6.4	ND< 1.0	ND< 1.0	ND< 1.0	14
Chromium	300	230	310	210	220	150	250	220	190	1,100
Lead	4,800*	5,800*	15,000*	1,100*	1,600*	1,600*	89	50	78	200
Selenium	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	78
Silver	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	ND< 20	78
Mercury	5.2*	11*	18*	73*	66*	83*	3.5	2.7	2.9	4.7
Polychlorinated Biphenyls (PCBs) / EF	A Method 8082									
PCB-1016	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	ND< 0.10	1.1
PCB-1221	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	1.1
PCB-1232	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	ND< 0.20	1.1
PCB-1242	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	1.1
PCB-1248	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	1.1
PCB-1254	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	ND< 0.05	1.1
PCB-1260	ND< 0.05	ND< 0.05	ND< 0.05	2.23*	2.35*	2.24*	ND< 0.05	ND< 0.05	ND< 0.05	1.1
Semi-volatile Organic Compounds (SV	OCs) / EPA Meth	od 8270C								
1,2,4-Trichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.098
1,2-Dichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.75
1,2-Dinitrobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
1,3-Dichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.57
1,3-Dinotrobenzene	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
1,4-Dichlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.047
1,4-Dinitrobenzene	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
1-Methylnapthalene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	1.8
2,3,4,6-Tetrachlorophenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	4.9
2,3,5,6-Tetrachlorophenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
2,4,5-Trichlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	29
2,4,6-Trichlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	1.8

Notes on page 4

Sample ID:	RHS-DU-1	RHS-DU-1.2 ∆	RHS-DU-1.3 ∆	RHS-DU-17	RHS-DU-17.2 A	RHS-DU-17.3 ∆	RHS-DU-26	RHS-DU-26.2 A	RHS-DU-26.3 ∆	HDOH Tier 1
Date Sampled:	2/4/2014	2/5/2014	2/5/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	EAL
Analytes Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
SVOCs (Continued)										
2,4-Dichlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	0.025
2,4-Dimethylphenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	9.9
2,4-Dinitrophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	5.6
2,4-Dinitrotoluene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.021
2,6-Dinitrotoluene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	3.6
2-Chloronaphthalene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
2-Chlorophenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.0092
2-Methylnapthalene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	4.1
2-Methylphenol (o-cresol)	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
2-Nitroaniline	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
2-Nitrophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
3,4-Methylphenol (m,p-cresol)	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
4-Bromophenylphenylether	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
4-Chloro-3-methylphenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
4-Chloroaniline	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	0.0063
4-Chlorophenylphenylether	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
4-Nitroaniline	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
4-Nitrophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	NS
Acenaphthene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	120
Acenaphthylene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	100
Aniline	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Anthracene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	4.3
Azobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Benzo(a)anthracene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	0.18	ND< 0.1	ND< 0.1	ND< 0.1	1.5
Benzo(a)pyrene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	0.43*	ND< 0.1	ND< 0.1	ND< 0.1	0.15
Benzo(b)fluoranthene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	0.40	ND< 0.1	ND< 0.1	ND< 0.1	1.5
Benzo(ghi)perylene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	0.38	ND< 0.1	ND< 0.1	ND< 0.1	35
Benzo(k)fluoranthene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	0.35	ND< 0.1	ND< 0.1	ND< 0.1	15
Benzyl alcohol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Bis (2-chloroethoxy) methane	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Bis (2-chloroethyl) ether	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.000064
Bis (2-chloroisopropyl) ether	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	0.0035
Bis (2-ethylhexyl) phthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	35
Bis(2-ethylhexyl) adipate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Butylbenzylphthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Carbazole	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Chrysene	ND< 0.1	ND< 0.1	ND< 0.1	0.16	0.15	0.46	ND< 0.1	ND< 0.1	ND< 0.1	30
Dibenzo(a,h)anthracene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	0.15
Dibenzofuran	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Diethylphthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	16
Dimethylphthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	22

Notes on page 4

Sample ID:	RHS-DU-1	RHS-DU-1.2 ∆	RHS-DU-1.3 ∆	RHS-DU-17	RHS-DU-17.2 Δ	RHS-DU-17.3 ∆	RHS-DU-26	RHS-DU-26.2 Δ	RHS-DU-26.3 ∆	HDOH Tier 1
Date Sampled:	2/4/2014	2/5/2014	2/5/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	EAL
Analytes Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
SVOCs (Continued)					-	·		-		
Di-n-butylphthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Di-n-octyl phthalate	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Fluoranthene	ND< 0.1	ND< 0.1	ND< 0.1	0.13	0.11	0.31	ND< 0.1	ND< 0.1	ND< 0.1	460
Fluorene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	100
Hexachlorobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.3
Hexachlorobutadiene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.18
Hexachlorocyclopentadiene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Hexacholorethane	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.27
Indeno(1,2,3-cd)pyrene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	0.40	ND< 0.1	ND< 0.1	ND< 0.1	1.5
Isophorone	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.77
Naphthalene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	4.4
Nitrobenzene	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.0046
N-Nitroso-di-n-propylamine	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
N-nitrosodiphenylamine	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Pentachlorophenol	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	ND< 5.0	0.82
Phenanthrene	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	ND< 0.1	0.12	ND< 0.1	ND< 0.1	ND< 0.1	440
Phenol	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	0.16
Pyrene	ND< 0.1	ND< 0.1	ND< 0.1	0.17	0.14	0.33	ND< 0.1	ND< 0.1	ND< 0.1	44
Pyridine	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	ND< 1.0	NS
Organochlorine Pesticides / EPA Metho	od 8081A									
Aldrin	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	0.92
Alpha-BHC	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	NS
Alpha-Chlordane	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	NS
Beta-BHC	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	NS
Chlordane (technical)	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	0.225	ND< 0.050	ND< 0.050	ND< 0.050	16
Delta-BHC	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	NS
Dieldrin	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	1.5
Endosulfan I	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	18
Endosulfan II	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	NS
Endosulfan sulfate	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	NS
Endrin	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	3.7
Endrin aldehyde	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	NS
Endrin ketone	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	NS
Gamma-BHC (Lindane)	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	0.075
Gamma-Chlordane	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	NS
Heptachlor	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	0.11
Heptachlor epoxide	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	ND< 0.005	0.053
Methoxychlor	ND< 0.010	ND< 0.010	ND< 0.000	ND< 0.010	ND< 0.010	ND< 0.000	ND< 0.010	ND< 0.000	ND< 0.000	16
p,p'-DDD	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	2
p,p'-DDD	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.010	1.4
p,p-DDE p,p'-DDT	ND< 0.010	ND< 0.010	ND< 0.010	0.164	0.195	0.175	ND< 0.010	ND< 0.010	ND< 0.010	1.4
		ND< 0.010 ND< 0.050							ND< 0.010 ND< 0.050	
Toxaphene	ND< 0.050	100 - U.U.SU	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050	ND< 0.050		0.44

Notes on page 4

<u>Notes:</u>	
Δ	Indicates a duplicate sample.
	Dioxin Toxic Equivalent (TEQ) reported in nanograms per kilogram (not milligrams per kilogram).
Bold*	The value exceeds the State of Hawaii Department of Health (HDOH) Tier 1 Environmental Action Levels (EAL).
HDOH Tier 1 EAL	The State of Hawaii Department of Health (HDOH) Tier 1 Environmental Action Level (EAL) for sites where groundwater is a current or potential source of drinking water, an meters from a surface water body. (Fall 2011, updated January 2012).
Italics	Reporting Limit is above the HDOH Tier 1 EAL.
mg/kg	milligrams per kilogram.
ND<	No detectable concentration. The number following the "less than" symbol is the laboratory reporting limit .
NS	No standard. The HDOH has not established a Tier 1 EAL for this analyte.

www.carrollcox.com 808-782-6627

and the site is greater than 150

Table 5Statistical Calculations for Replicate SamplesState of Hawaii Department of EducationRadford High School Track and Field InvestigationHonolulu, Oahu, Hawaii

Project No: 17012-012148.00 / Task 048

Analyte	EPA	Sample	Sample Type	Result	Units	RPD of	RPD of	Mean	Standard	RSD
-	Method	Identification				Primary and	Primary and		Deviation	
						Duplicate	Triplicate			
Decision Uni	t 1 - Repli	cate Samples								
Dioxin	8290	RHS-DU1	Primary	710	ng/kg	22.5%	121.3%	1,500.0	1,215.8	81.1%
		RHS-DU1.2	Duplicate	890	ng/kg					
		RHS-DU1.3	Triplicate	2,900	ng/kg					
Arsenic	6010B	RHS-DU1	Primary	35	mg/kg	8.2%	22.2%	33.7	5.1	15.2%
		RHS-DU1.2	Duplicate	38	mg/kg					
		RHS-DU1.3	Triplicate	28	mg/kg					
Barium 6010B	RHS-DU1	Primary	1,200	mg/kg	8.7%	8.7%	1,133.3	57.7	5.1%	
		RHS-DU1.2	Duplicate	1,100	mg/kg					
		RHS-DU1.3	Triplicate	1,100	mg/kg					
Cadmium	6010B	RHS-DU1	Primary	14	mg/kg	0.0%	60.0%	18.0	6.9	38.5%
		RHS-DU1.2	Duplicate	14	mg/kg					
		RHS-DU1.3	Triplicate	26	mg/kg					
Chromium	6010B	RHS-DU1	Primary	300	mg/kg	26.4%	3.3%	280.0	43.6	15.6%
		RHS-DU1.2	Duplicate	230	mg/kg					
		RHS-DU1.3	Triplicate	310	mg/kg					
Lead	6010B	RHS-DU1	Primary	4,800	mg/kg	18.9%	103.0%	8,533.3	5,622.6	65.9%
		RHS-DU1.2	Duplicate	5,800	mg/kg					
		RHS-DU1.3	Triplicate	15,000	mg/kg					
Mercury	7471	RHS-DU1	Primary	5	mg/kg	71.6%	110.3%	11.4	6.4	56.2%
		RHS-DU1.2	Duplicate	11	mg/kg]				
		RHS-DU1.3	Triplicate	18	mg/kg]				

Notes on page 4

B U R E A U V E R I TAS

Project No: 17012-012148.00 / Task 048 WWW.Carrollcox @011 808-782-6627

Analyte	EPA	Sample	Sample Type	Result	Units	RPD of	RPD of	Mean	Standard	RSD
	Method	Identification				Primary and	Primary and		Deviation	
						Duplicate	Triplicate			
Decision Unit	: 17 - Rep	licate Sample	S			-				
Dioxin	8290	RHS-DU17	Primary	230	ng/kg	23.1%	19.6%	266.7	32.1	12.1%
		RHS-DU17.2	Duplicate	290	ng/kg					
		RHS-DU17.3	Triplicate	280	ng/kg					
Arsenic 6010B	RHS-DU17	Primary	23	mg/kg	4.3%	12.2%	24.3	1.5	6.3%	
		RHS-DU17.2	Duplicate	24	mg/kg					
		RHS-DU17.3	Triplicate	26	mg/kg					
Barium 6010B	RHS-DU17	Primary	590	mg/kg	19.8%	12.7%	660.0	65.6	9.9%	
	RHS-DU17.2	Duplicate	720	mg/kg						
		RHS-DU17.3	Triplicate	670	mg/kg					
Cadmium 6010B	RHS-DU17	Primary	4.5	mg/kg	2.2%	34.9%	5.2	1.1	20.7%	
		RHS-DU17.2	Duplicate	4.6	mg/kg					
		RHS-DU17.3	Triplicate	6.4	mg/kg					
Chromium	6010B	RHS-DU17	Primary	210	mg/kg	4.7%	33.3%	193.3	37.9	19.6%
		RHS-DU17.2	Duplicate	220	mg/kg					
		RHS-DU17.3	Triplicate	150	mg/kg					
Lead	6010B	RHS-DU17	Primary	1,100	mg/kg	37.0%	37.0%	1,433.3	288.7	20.1%
		RHS-DU17.2	Duplicate	1,600	mg/kg					
		RHS-DU17.3	Triplicate	1,600	mg/kg					
Mercury	7471	RHS-DU17	Primary	73	mg/kg	10.1%	12.8%	74.0	8.5	11.5%
		RHS-DU17.2	Duplicate	66	mg/kg					
		RHS-DU17.3	Triplicate	83	mg/kg					
Chrysene	8270C	RHS-DU17	Primary	0.16	mg/kg	6.5%	96.8%	0.26	0.18	68.6%
		RHS-DU17.2	Duplicate	0.15	mg/kg					
		RHS-DU17.3	Triplicate	0.46	mg/kg					
Fluroanthene	8270C	RHS-DU17	Primary	0.13	mg/kg	16.7%	81.8%	0.18	0.11	60.1%
		RHS-DU17.2	Duplicate	0.11	mg/kg					
		RHS-DU17.3	Triplicate	0.31	mg/kg					

Notes on page 4

Project No: 17012-012148.00 / Task 048 WWW.Carrollcox @ 011 808-782-6627

Analyte	EPA	Sample	Sample Type	Result	Units	RPD of	RPD of	Mean	Standard	RSD
	Method	Identification				Primary and	Primary and		Deviation	
						Duplicate	Triplicate			
Decision Uni	it 17 - Rep	licate Samples	s (continued)		•		-			
Pyrene	8270C	RHS-DU17	Primary	0.17	mg/kg	19.4%	64.0%	0.21	0.10	47.9%
		RHS-DU17.2	Duplicate	0.14	mg/kg					
		RHS-DU17.3	Triplicate	0.33	mg/kg					
PCB-1260	8082	RHS-DU17	Primary	2.23	mg/kg	5.2%	0.4%	2.27	0.07	2.9%
	RHS-DU17.2	Duplicate	2.35	mg/kg						
		RHS-DU17.3	Triplicate	2.24	mg/kg					
p,p'-DDT 8081A	RHS-DU17	Primary	0.164	mg/kg	17.3%	6.5%	0.18	0.02	8.8%	
	RHS-DU17.2	Duplicate	0.195	mg/kg						
		RHS-DU17.3	Triplicate	0.175	mg/kg					
Decision Uni	it 26 - Rep	licate Sample:	S							
Dioxin 8290	RHS-DU26	Primary	33	ng/kg	53.8%	49.1%	24.00	7.81	32.5%	
		RHS-DU26.2	Duplicate	19	ng/kg					
		RHS-DU26.3	Triplicate	20	ng/kg					
Barium	6010B	RHS-DU26	Primary	100	mg/kg	36.7%	16.2%	84.67	15.50	18.3%
		RHS-DU26.2	Duplicate	69	mg/kg					
		RHS-DU26.3	Triplicate	85	mg/kg					
Chromium	6010B	RHS-DU26	Primary	250	mg/kg	12.8%	27.3%	220.00	30.00	13.6%
		RHS-DU26.2	Duplicate	220	mg/kg					
		RHS-DU26.3	Triplicate	190	mg/kg					
Lead	6010B	RHS-DU26	Primary	89	mg/kg	56.1%	13.2%	72.33	20.11	27.8%
		RHS-DU26.2	Duplicate	50	mg/kg					
		RHS-DU26.3	Triplicate	78	mg/kg					
Mercury	7471	RHS-DU26	Primary	3.5	mg/kg	25.8%	18.8%	3.03	0.42	13.7%
		RHS-DU26.2	Duplicate	2.7	mg/kg]				
		RHS-DU26.3	Triplicate	2.9	mg/kg					

Notes on page 4

Project No: 17012-012148.00 / Task 048 WWW.Carrollcox @ 947 808-782-6627

<u>Notes:</u>	
ng/kg	Nanograms per kilogram
mg/kg	Milligrams per kilogram
RPD	Relative Percent Difference
RSD	Relative Standard Deviation

Project No: 17012-012148.00 / Task 048 WWW.Carrollcoxp. @@m 808-782-6627

PHOTOGRAPHS

		<image/>	
Project No.	Description	View of the excavation pits located on the northeaster portion of the Radford High School track, looking north	Photo 1
17012-012148.00	Site Name	Radford High School, 4361 Salt Lake Blvd., Honolulu, Hawaii 96816	Photo Date
Task 48	Client	State of Hawaii Department of Education	Dec. 20, 2013
		<image/>	
Project No.	Description	View of the excavation pit where asbestos containing material was found, looking north	Photo 2
17012-012148.00 Task 48	Site Name	Radford High School, 4361 Salt Lake Blvd., Honolulu, Hawaii 96816 State of Hawaii Department of Education 8-782-6627	Photo Date Dec. 20, 2013

		<image/>						
Project No.	Description	Close up view of the asbestos containing material found under the Radford High School track	Photo 3					
17012-012148.00 Task 48	Site Name							
Task 48	Client	State of Hawaii Department of Education	Dec. 20, 2013					
Project No.	Description	Close up view of the suspect asbestos containing material found under the Radford High School track	Photo 4					

Project No.	Description	View of the entrance to the site, looking north	Photo 5
17012-012148.00	Site Name	Radford High School, 4361 Salt Lake Blvd., Honolulu, Hawaii 96816	Photo Date
Task 48	Client	State of Hawaii Department of Education	Feb. 5, 2014
Project No. 17012-012148.00	Description Site Name	View of the northern track portion and stockpiles covered by black fabric, looking north Radford High School, 4361 Salt Lake Blvd., Honolulu, Hawaii 96816	Photo 6 Photo Date

Project No.	Description	Photo 7	
17012-012148.00 Task 48	Site Name Client	Radford High School, 4361 Salt Lake Blvd., Honolulu, Hawaii 96816 State of Hawaii Department of Education	Photo Date Feb. 5, 2014
Project No. 17012-012148.00	Description Site Name	View of the southern portion of the track, looking west Radford High School, 4361 Salt Lake Blvd., Honolulu, Hawaii 96816	Photo 8 Photo Date
Task 48	Client	State of Hawaii Department of Education	Feb. 5, 2014

		1	
			Ĵ
3 de	100 M		

Project No.	Description	View of the western portion of the track, looking south	Photo 9
17012-012148.00	Site Name	Radford High School, 4361 Salt Lake Blvd., Honolulu, Hawaii 96816	Photo Date
Task 48	Client	State of Hawaii Department of Education	Feb. 5, 2014

Project No.	Description	View of the eastern portion of the track, looking south	Photo 10
- 17012-012148.00	Site Name	Radford High School, 4361 Salt Lake Blvd., Honolulu, Hawaii 96816	Photo Date
Task 48		State of Hawaii Department of Education	Feb. 5, 2014

APPENDIX A

LABORATORY ANALYTICAL REPORTS AND CHAIN OF CUSTODY FORMS (TESTAMERICA)

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Honolulu 1946 Young St. Suite 400A Honolulu, HI 96826 Tel: 808-486-5227

TestAmerica Job ID: HWL0089

Client Project/Site: 17012-012148.00 Client Project Description: Radford HS

For:

Bureau Veritas 841 Bishop Street, Suite 1100 Honolulu, HI 96813

Attn: Kenney Gomes

Authorized for release by: 1/24/2014 11:10:32 AM

Kristie Reilly, Project Manager 808-486-5227 Kristie.Brachmann@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

www.carrollcox.com 808-782-6627

Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	13
QC Sample Results	15
QC Association	28
Chronicle	31
Certification Summary	32
Method Summary	34
Chain of Custody	35
Toxicity Summary	37
Isotope Dilution Summary	38

3

Qualifiers

GC/MS Semi VOA

GC/MS Semi Qualifier	Qualifier Description	
	RPD of the LCS and LCSD exceeds the control limits	_
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
GC Semi VO	Α	
Qualifier	Qualifier Description	
p	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.	- 7
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Dioxin		8
Qualifier	Qualifier Description	
В	Compound was found in the blank and sample.	- 9
G	The reported quantitation limit has been raised due to an exhibited elevated noise or matrix interference	
q	The isomer is qualified as positively identified, but at an estimated quantity because the quantitation is based on the theoretical ratio for these samples.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals		
Qualifier	Qualifier Description	
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	_
	applicable.	
F1	MS and/or MSD Recovery exceeds the control limits	
F2	MS/MSD RPD exceeds control limits	
Glossary		- 1
Abbreviation	These commonly used abbreviations may or may not be present in this report.	

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TestAmerica Honolulu

Job ID: HWL0089

Laboratory: TestAmerica Honolulu

Narrative

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory unless otherwise stated in the report. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. TestAmerica Analytical Testing Corporation certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

The Chain(s) of Custody are included and are an integral part of this report. This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(808)486-5227

LABORATORY REPORT

At sample receipt, the cooler/sample was 2 degrees C.

NELAC states that samples which require thermal preservation shall be considered acceptable if the arrival temperature is within 2 degrees C of the required temperature or the method specified range. For samples with a temperature requirement of 4 degrees C, an arrival temperature from 0 degrees C to 6 degrees C meets specifications. Samples that are delivered to the laboratory on the same day that they are collected may not meet these criteria. In these cases, the samples are considered acceptable if there is evidence that the chilling process has begun, such as arrival on ice.

The reported results were obtained in compliance with the 2003 NELAC standards unless otherwise noted.

Samples were prepared in accordance with the State of Hawai'i Department of Health Office of Hazard Evaluation and Emergency Response's Technical Guidance Manual for the Implementation of the Hawai'i State Contingency Plan 2009 edition Laboratory Preparation of Multi-Increment Samples.

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-66219-1

Comments

No additional comments.

Receipt

The sample was received on 12/27/2013 9:15 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.9° C.

GC/MS Semi VOA

Method(s) 8270C: Insufficient sample volume was available to perform batch matrix spike/matrix spike duplicate (MS/MSD) associated with batch 153305. The laboratory control sample (LCS) was performed in duplicate to provide precision data for this batch.

Method(s) 8270C: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 153305 recovered outside control limits for the following analytes: 4-nitrophenol, diethyl phthalate, 3-nitroaniline, 2,4-dinitrotoluene, and 4-nitroaniline. The individual LCS/LCSD percent recoveries met acceptance limit.

Method(s) 8270C: The following sample(s) was diluted due to the abundance of non-target analytes: HW0089-01 (440-66219-1). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

Job ID: HWL0089 (Continued)

Laboratory: TestAmerica Irvine (Continued)

GC Semi VOA

Method(s) 8081A: The continuing calibration verification (CCV) associated with batch 153523 recovered above the upper control limit for 4,4 DDD. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: (CCVRT 440-153523/15), HW0089-01 (440-66219-1).

Method(s) 8081A: The capping continuing calibration verification (CCV) associated with batch 153523 did not meet control limits for 4,4 DDD, 4,4 DDT, and Methoxychlor. Samples were re-analyzed for confirmation of results. Sample matrix is suspected to have contributed to this failure. (CCV 440-153523/27), HW0089-01 (440-66219-1)

Method(s) 8082: The %RPD between the primary and confirmation column exceeded 40% for the DCBP for the following sample(s): (440-66257-2 MS), (440-66257-2 MSD). The lower value has been reported and qualified in accordance with the laboratory's SOP.

Method(s) 8082: The %RPD between the primary and confirmation column(s) exceeded 40% for 1260 for the following sample(s): HW0089-01 (440-66219-1). The lower value has been reported and qualified in accordance with the laboratory's SOP.

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted. Laboratory: TestAmerica Sacramento

Narrative

Job Narrative 320-5498-1

Receipt

The sample was received on 12/27/2013 8:55 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.8° C.

Dioxin

Method(s) 8290:

The following samples were diluted to bring the concentration of one or more target analytes within the calibration range: HWL0089-01 (320-5498-1). Elevated reporting limits (RLs) are provided.

The following sample [320-5498-1] exhibited elevated noise or matrix interferences for one or more analytes requiring the detection limits to be raised appropriately. These analytes were flagged with the "G" qualifier.

The closing bracketing continuing calibration verification (CCV) associated with analytical batch 34312 has the analyte 2,3,7,8-TCDF with a percent difference value that is between the method criteria of 20% to 25% deviation from the initial calibration curve. Per method guidelines, an average relative response factor (RRF) is calculated from the opening and closing bracketing CCV's and is used to guantitate any positive results in the associated samples for the affected analyte.

lon abundance ratios are outside criteria for one or more analytes in the following samples: (MB 320-33622/1-A), HWL0089-01 (320-5498-1). Quantitation is based on the theoretical ion abundance ratio; therefore, these analytes have been reported as an estimated maximum possible concentration (EMPC). The affected analytes have been flagged.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Dioxin Prep No analytical or quality issues were noted. Laboratory: TestAmerica Seattle

www.carrollcox.com8808-782-6627

TestAmerica Honolulu

1/24/2014

Job ID: HWL0089 (Continued)

Laboratory: TestAmerica Seattle (Continued)

Narrative

Receipt

The sample was received on 12/27/2013 9:55 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.7° C.

Case Narrative

Metals - Method(s) 6010B

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analysis batch 151504 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits. The data have been "F" qualified and reported.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Sample Summary

Matrix

Solid/Soil

Client: Bureau Veritas Project/Site: 17012-012148.00

Client Sample ID

RHS-01

Lab Sample ID

HWL0089-01

TestAmerica Job ID: HWL0089

Received

12/23/13 13:10

Collected

12/20/13 15:00

5	
8	
9	
13	

Carrolloot. on

TestAmerica Honolulu

www.carrollcox.com.808-782-6627

1/24/2014

Client Sample ID: RHS-01

L	ab	Sam	ple I	D: H\	NLC)089	-01
	_				_	_	

Analyte	Result	Qualifier	RL	EDL	Unit	Dil Fac	D	Method	Prep Type
2,3,7,8-TCDD	88		21	11	pg/g	20	₽	8290	Total/NA
1,2,3,7,8-PeCDD	340		100	52	pg/g	20	₽	8290	Total/NA
1,2,3,7,8-PeCDF	1100		100	49	pg/g	20	₽	8290	Total/NA
2,3,4,7,8-PeCDF	2300		100	52	pg/g	20	¢.	8290	Total/NA
1,2,3,4,7,8-HxCDD	250		100	11	pg/g	20	₽	8290	Total/NA
1,2,3,6,7,8-HxCDD	420		100	8.5	pg/g	20	₽	8290	Total/NA
1,2,3,7,8,9-HxCDD	320		100	8.2	pg/g	20	φ.	8290	Total/NA
1,2,3,4,7,8-HxCDF	1900	В	100	85	pg/g	20	₽	8290	Total/NA
1,2,3,6,7,8-HxCDF	1400	В	100	71	pg/g	20	₽	8290	Total/NA
2,3,4,6,7,8-HxCDF	1900	В	100	79	pg/g	20	φ.	8290	Total/NA
1,2,3,4,6,7,8-HpCDD	2400	В	100	16	pg/g	20	₽	8290	Total/NA
1,2,3,4,6,7,8-HpCDF	7600		100	98	pg/g	20		8290	Total/NA
1,2,3,4,7,8,9-HpCDF	220		120	120	pg/g	20		8290	Total/NA
CDD	5600		210	19	pg/g	20		8290	Total/NA
OCDF	1700		210	5.7	pg/g	20	₽	8290	Total/NA
Total TCDD	4400		210	11	pg/g	20		8290	Total/NA
Total TCDF	38000	-	110	110	pg/g	20	¢	8290	Total/NA
Total PeCDD	5000		100	52	pg/g	20	₽	8290	Total/NA
Total PeCDF	24000		100	50	pg/g	20		8290	Total/NA
Fotal HxCDD	5700	Ч	100	9.1	pg/g	20		8290	Total/NA
Fotal HxCDF	16000	a P	100	81	pg/g	20		8290	Total/NA
	4900		100	16		20		8290	Total/NA
Fotal HpCDD					pg/g			8290 8290	
	8900	GB	110	110	pg/g	20			Total/NA
2,3,7,8-TCDF - RA	1400		21	3.2	pg/g	20	~~	8290	Total/NA
Analyte		Qualifier	RL		Unit	Dil Fac			Prep Type
2-Methylnaphthalene	0.25	J	0.69	0.15	mg/Kg	4	₽	8270C	Total/NA
Benzo[b]fluoranthene	0.15	J	0.69	0.14	mg/Kg	4	₽	8270C	Total/NA
ndeno[1,2,3-cd]pyrene	0.49	J	0.69	0.27	mg/Kg	4	\$	8270C	Total/NA
Naphthalene	2.7		0.69	0.14	mg/Kg	4	₽	8270C	Total/NA
DRO (C10-C28)	24		5.2	2.6	mg/Kg	1	¢	8015B	Total/NA
RRO(C29-C40)	23		5.2	2.6	mg/Kg	1	₽	8015B	Total/NA
1,4'-DDE	0.0046		0.0026	0.00078	mg/Kg	1	\$	8081A	Total/NA
1,4'-DDT	0.0045	р	0.0026	0.00078	mg/Kg	1	¢	8081A	Total/NA
Dieldrin	0.0035		0.0026	0.00078	mg/Kg	1	₽	8081A	Total/NA
Endrin	0.00086	Jр	0.0026	0.00078	mg/Kg	1	\$	8081A	Total/NA
Endrin aldehyde	0.0035	р	0.0026	0.00078	mg/Kg	1	₽	8081A	Total/NA
Aroclor 1260	0.094	р	0.026	0.0089	mg/Kg	1	¢	8082	Total/NA
Arsenic	43		6.2		mg/Kg	10	¢	6010B	Total/NA
Barium	940		1.0		mg/Kg	10	₽	6010B	Total/NA
	26		2.1		mg/Kg	10	₽		Total/NA
Cadmium	20							6010D	Total/NA
	210		2.7		mg/Kg	10	245	6010B	
Cadmium Chromium Lead			2.7 3.1				¢	6010B	Total/NA
Chromium	210				mg/Kg mg/Kg mg/Kg	10		6010B	

This Detection Summary does not include radiochemical test results.

TestAmerica Honolulu

Client: Bureau Veritas Project/Site: 17012-012148.00

Client Sample ID: RHS-01

Date Collected: 12/20/13 15:00 Date Received: 12/23/13 13:10

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND	0.69	0.28	mg/Kg	\$	12/30/13 11:44	01/02/14 16:39	4
1,2-Dichlorobenzene	ND	0.69	0.13	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
1,3-Dichlorobenzene	ND	0.69	0.28	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
1,4-Dichlorobenzene	ND	0.69	0.28	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
1-Methylnaphthalene	ND	0.73	0.31	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
2,4,5-Trichlorophenol	ND	0.69	0.27	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
2,4,6-Trichlorophenol	ND	0.69	0.16	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
2,4-Dichlorophenol	ND	0.69	0.14	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
2,4-Dimethylphenol	ND	0.69	0.27	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
2,4-Dinitrophenol	ND	1.4	0.69	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
2,4-Dinitrotoluene	ND *	0.69	0.17	mg/Kg	₩	12/30/13 11:44	01/02/14 16:39	4
2,6-Dinitrotoluene	ND	0.69	0.20	mg/Kg	\$	12/30/13 11:44	01/02/14 16:39	4
2-Chloronaphthalene	ND	0.69	0.14	mg/Kg	₽	12/30/13 11:44	01/02/14 16:39	4
2-Chlorophenol	ND	0.69	0.15	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
2-Methylnaphthalene	0.25 J	0.69	0.15	mg/Kg	₽	12/30/13 11:44	01/02/14 16:39	4
2-Methylphenol	ND	0.69	0.17	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
2-Nitroaniline	ND	0.69	0.14	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
2-Nitrophenol	ND	0.69	0.28	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
3,3'-Dichlorobenzidine	ND	1.7	0.31	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
3-Methylphenol + 4-Methylphenol	ND	0.69	0.28	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
3-Nitroaniline	ND *	0.69	0.28	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
4,6-Dinitro-2-methylphenol	ND	0.88	0.28	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
4-Bromophenyl phenyl ether	ND	0.69	0.16	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
4-Chloro-3-methylphenol	ND	0.69	0.15	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
4-Chloroaniline	ND	0.69	0.28	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
4-Chlorophenyl phenyl ether	ND	0.69	0.18	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
4-Nitroaniline	ND *	1.7	0.28	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
4-Nitrophenol	ND *	1.7	0.29	mg/Kg	¢.	12/30/13 11:44	01/02/14 16:39	4
Acenaphthene	ND	0.69	0.14	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
Acenaphthylene	ND	0.69	0.15	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
Anthracene	ND	0.69	0.17	mg/Kg	÷.	12/30/13 11:44	01/02/14 16:39	4
Benzo[a]anthracene	ND	0.69	0.15	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
Benzo[a]pyrene	ND	0.69	0.14	mg/Kg	₽	12/30/13 11:44	01/02/14 16:39	4
Benzo[b]fluoranthene	0.15 J	0.69		mg/Kg	ф.	12/30/13 11:44	01/02/14 16:39	4
Benzo[g,h,i]perylene	ND	0.69	0.23	mg/Kg	₽	12/30/13 11:44	01/02/14 16:39	4
Benzo[k]fluoranthene	ND	0.69	0.15	mg/Kg	₽	12/30/13 11:44	01/02/14 16:39	4
Benzoic acid	ND	1.7		mg/Kg	¢.	12/30/13 11:44	01/02/14 16:39	4
Benzyl alcohol	ND	0.69		mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
bis (2-chloroisopropyl) ether	ND	0.69		mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
Bis(2-chloroethoxy)methane	ND	0.69		mg/Kg	ф.	12/30/13 11:44	01/02/14 16:39	4
Bis(2-chloroethyl)ether	ND	0.69		mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
Bis(2-ethylhexyl) phthalate	ND	0.69		mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
Butyl benzyl phthalate	ND	0.69		mg/Kg		12/30/13 11:44	01/02/14 16:39	4
Carbazole	ND	0.69		mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
Chrysene	ND	0.69		mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
Dibenz(a,h)anthracene	ND	0.88		mg/Kg	¢.	12/30/13 11:44	01/02/14 16:39	4
Dibenzofuran	ND	0.69		mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
Diethyl phthalate	ND *	0.69		mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	4
Dimethyl phthalate	ND	0.69		mg/Kg	÷	12/30/13 11:44	01/02/14 16:39	4

TestAmerica Honolulu

Lab Sample ID: HWL0089-01 Matrix: Solid/Soil

Percent Solids: 95.1

5

7

Client Sample ID: RHS-01 Date Collected: 12/20/13 15:00

Date Received: 12/23/13 13:10

Endrin

Lab Sample ID: HWL0089-01 Matrix: Solid/Soil

Percent Solids: 95.1

5

7

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Di-n-butyl phthalate	ND		0.69	0.19	mg/Kg	\$	12/30/13 11:44	01/02/14 16:39	
Di-n-octyl phthalate	ND		0.69	0.19	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	
Fluoranthene	ND		0.69	0.15	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	
Fluorene	ND		0.69	0.15	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	
lexachlorobenzene	ND		0.69	0.15	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	
lexachlorobutadiene	ND		0.69	0.28	mg/Kg	₽	12/30/13 11:44	01/02/14 16:39	
lexachlorocyclopentadiene	ND		1.7	0.28	mg/Kg	₽	12/30/13 11:44	01/02/14 16:39	
lexachloroethane	ND		0.69	0.28	mg/Kg	₽	12/30/13 11:44	01/02/14 16:39	
ndeno[1,2,3-cd]pyrene	0.49	J	0.69	0.27	mg/Kg	¢.	12/30/13 11:44	01/02/14 16:39	
sophorone	ND		0.69	0.14	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	
laphthalene	2.7		0.69	0.14	mg/Kg	☆	12/30/13 11:44	01/02/14 16:39	
litrobenzene	ND		0.69	0.15	mg/Kg	¢,	12/30/13 11:44	01/02/14 16:39	
I-Nitrosodi-n-propylamine	ND		0.52	0.15	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	
I-Nitrosodiphenylamine	ND		0.69	0.17	mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	
entachlorophenol	ND		1.7	0.31		¢	12/30/13 11:44	01/02/14 16:39	
Phenanthrene	ND		0.69		mg/Kg	₽	12/30/13 11:44	01/02/14 16:39	
Phenol	ND		0.69		mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	
yrene	ND		0.69		mg/Kg	¢	12/30/13 11:44	01/02/14 16:39	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	40		35 - 125				12/30/13 11:44	01/02/14 16:39	
-Fluorophenol (Surr)	41		25 - 120				12/30/13 11:44	01/02/14 16:39	
litrobenzene-d5 (Surr)	52		30 - 120				12/30/13 11:44	01/02/14 16:39	
Phenol-d6 (Surr)	45		35 - 120				12/30/13 11:44	01/02/14 16:39	
erphenyl-d14 (Surr)	79		40 - 135				12/30/13 11:44	01/02/14 16:39	
-Fluorobiphenyl	69		35 - 120				12/30/13 11:44	01/02/14 16:39	
Method: 8015B - Diesel Range	Organics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
DRO (C10-C28)	24		5.2	2.6	mg/Kg	\$	12/28/13 07:03	12/30/13 08:36	
RRO(C29-C40)	23		5.2	2.6	mg/Kg	₽	12/28/13 07:03	12/30/13 08:36	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
n-Octacosane	63		40 - 140				12/28/13 07:03	12/30/13 08:36	
Method: 8081A - Organochlorir	ne Pesticides (G	C)							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
	ND		0.0026	0.00078		¢	12/27/13 17:32	12/31/13 14:53	
,4 -DDD			0.0026	0 00078	mg/Kg	¢	12/27/13 17:32	12/31/13 14:53	
	0.0046		0.0020						
,4'-DDE	0.0046 0.0045	р	0.0026	0.00078	mg/Kg	¢	12/27/13 17:32	12/31/13 14:53	
,4'-DDE ,4'-DDT		p			mg/Kg	¢ ¢	12/27/13 17:32 12/27/13 17:32		
,4'-DDE ,4'-DDT Idrin	0.0045	p	0.0026	0.00078	mg/Kg mg/Kg			12/31/13 14:53	
, 4'-DDE , 4'-DDT Idrin Ipha-BHC	<mark>0.0045</mark> ND	p	0.0026 0.0026	0.00078 0.00078	mg/Kg mg/Kg mg/Kg	¢	12/27/13 17:32	12/31/13 14:53 12/31/13 14:53	
, 4'-DDE , 4'-DDT Idrin Ipha-BHC eta-BHC	<mark>0.0045</mark> ND ND	p	0.0026 0.0026 0.0026	0.00078 0.00078 0.00078	mg/Kg mg/Kg mg/Kg mg/Kg	¢ ¢	12/27/13 17:32 12/27/13 17:32	12/31/13 14:53 12/31/13 14:53 12/31/13 14:53	
, 4'-DDE , 4'-DDT Idrin Ipha-BHC eta-BHC :hlordane (technical)	<mark>0.0045</mark> ND ND ND	p	0.0026 0.0026 0.0026 0.0026	0.00078 0.00078 0.00078 0.00078	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	¢ ¢ ¢	12/27/13 17:32 12/27/13 17:32 12/27/13 17:32	12/31/13 14:53 12/31/13 14:53 12/31/13 14:53 12/31/13 14:53	
,4'-DDE ,4'-DDT Idrin Ipha-BHC eta-BHC :hlordane (technical) elta-BHC	0.0045 ND ND ND ND	P	0.0026 0.0026 0.0026 0.0026 0.026	0.00078 0.00078 0.00078 0.00078 0.00052	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * *	12/27/13 17:32 12/27/13 17:32 12/27/13 17:32 12/27/13 17:32	12/31/13 14:53 12/31/13 14:53 12/31/13 14:53 12/31/13 14:53 12/31/13 14:53	
,4'-DDE ,4'-DDT Idrin Ipha-BHC eta-BHC Chlordane (technical) elta-BHC Dieldrin	0.0045 ND ND ND ND	P	0.0026 0.0026 0.0026 0.0026 0.026 0.0252	0.00078 0.00078 0.00078 0.00078 0.00078 0.0052 0.00078	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	¢ ¢ ¢ ¢	12/27/13 17:32 12/27/13 17:32 12/27/13 17:32 12/27/13 17:32 12/27/13 17:32	12/31/13 14:53 12/31/13 14:53 12/31/13 14:53 12/31/13 14:53 12/31/13 14:53 12/31/13 14:53	
,4'-DDD ,4'-DDE ,4'-DDT Ndrin Ipha-BHC eta-BHC Chlordane (technical) lelta-BHC Dieldrin Endosulfan I	0.0045 ND ND ND ND 0.0035	P	0.0026 0.0026 0.0026 0.0026 0.026 0.0052 0.0052	0.00078 0.00078 0.00078 0.00078 0.0052 0.00078 0.00078	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	¢ ¢ ¢ ¢ ¢	12/27/13 17:32 12/27/13 17:32 12/27/13 17:32 12/27/13 17:32 12/27/13 17:32 12/27/13 17:32	12/31/13 14:53 12/31/13 14:53 12/31/13 14:53 12/31/13 14:53 12/31/13 14:53 12/31/13 14:53 12/31/13 14:53 12/31/13 14:53	

TestAmerica Honolulu

12/31/13 14:53

 ND
 0.0052
 0.0010 mg/Kg
 #
 12/27/13 17:32

 0.00086 J p
 0.0026
 0.00078 mg/Kg
 #
 12/27/13 17:32

www.carrollcoകംcoണം808-782-6627

Client Sample ID: RHS-01 Date Collected: 12/20/13 15:00

Date Received: 12/23/13 13:10

Total PeCDF

Total HxCDD

Total HxCDF

Total HpCDD

Lab Sample ID: HWL0089-01 Matrix: Solid/Soil

Percent Solids: 95.1

5

7

ate Received: 12/23/13 13:10								Percent Soli	ds: 95.
Method: 8081A - Organochlorir Analyte		C) (Continu Qualifier	ed) RL	МП	Unit	D	Prepared	Analyzed	Dil Fa
Endrin aldehyde	0.0035		0.0026	0.00078	mg/Kg	— -	12/27/13 17:32	12/31/13 14:53	
Endrin ketone	ND	P	0.0026		mg/Kg	¢	12/27/13 17:32	12/31/13 14:53	
gamma-BHC (Lindane)	ND		0.0026	0.00078			12/27/13 17:32	12/31/13 14:53	
Heptachlor	ND		0.0026		mg/Kg	¢.	12/27/13 17:32	12/31/13 14:53	
Heptachlor epoxide	ND		0.0026		mg/Kg	¢	12/27/13 17:32	12/31/13 14:53	
	ND		0.0026	0.00078		 ф	12/27/13 17:32	12/31/13 14:53	
Methoxychlor Foxaphene	ND		0.0028		mg/Kg	¢	12/27/13 17:32	12/31/13 14:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Tetrachloro-m-xylene	<u>67</u>		35 - 115				12/27/13 17:32	12/31/13 14:53	
DCB Decachlorobiphenyl (Surr)	96		45 - 120				12/27/13 17:32	12/31/13 14:53	
Method: 8082 - Polychlorinated				-					
Analyte		Qualifier			Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Aroclor 1016	ND		0.026	0.0089	mg/Kg	*	12/30/13 11:45	12/30/13 20:23	
roclor 1221	ND		0.026	0.0089	mg/Kg	*	12/30/13 11:45	12/30/13 20:23	
vroclor 1232	ND		0.026	0.0089		¢	12/30/13 11:45	12/30/13 20:23	
vroclor 1242	ND		0.026	0.0089	mg/Kg	¢	12/30/13 11:45	12/30/13 20:23	
vroclor 1248	ND		0.026	0.0089	mg/Kg	¢	12/30/13 11:45	12/30/13 20:23	
roclor 1254	ND		0.026	0.0089	mg/Kg	¢	12/30/13 11:45	12/30/13 20:23	
Aroclor 1260	0.094	p	0.026	0.0089	mg/Kg	¢	12/30/13 11:45	12/30/13 20:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
DCB Decachlorobiphenyl (Surr)	78		45 - 120				12/30/13 11:45	12/30/13 20:23	
Method: 8290 - Dioxins and Fu	•	<mark>MS)</mark> Qualifier	RL	FDI	Unit	D	Prepared	Analyzed	Dil Fa
2,3,7,8-TCDD		duamor	21	11	pg/g	— -	01/10/14 11:33	01/20/14 16:28	
,2,3,7,8-PeCDD	340		100	52		¢	01/10/14 11:33	01/20/14 16:28	
,2,3,7,8-PeCDF	1100		100	49		¢	01/10/14 11:33	01/20/14 16:28	
			100				01/10/14 11:33	01/20/14 16:28	
3,3,4,7,8-PeCDF	2300		100	11	pg/g	¢.	01/10/14 11:33	01/20/14 16:28	:
,2,3,4,7,8-HxCDD	250		100		pg/g	¢.	01/10/14 11:33	01/20/14 16:28	:
,2,3,6,7,8-HxCDD	420			8.5		 ¢-		01/20/14 16:28	
,2,3,7,8,9-HxCDD	320	_	100		pg/g	~	01/10/14 11:33		:
,2,3,4,7,8-HxCDF	1900		100		pg/g	*	01/10/14 11:33	01/20/14 16:28	
,2,3,6,7,8-HxCDF	1400		100		pg/g	¢ 	01/10/14 11:33	01/20/14 16:28	
,3,4,6,7,8-HxCDF	1900	В	100		pg/g	ф 	01/10/14 11:33	01/20/14 16:28	
,2,3,7,8,9-HxCDF	ND		100		pg/g	ţ. Ţ	01/10/14 11:33	01/20/14 16:28	
,2,3,4,6,7,8-HpCDD	2400	В	100	16	pg/g	¢	01/10/14 11:33	01/20/14 16:28	
,2,3,4,6,7,8-HpCDF	7600	В	100	98	pg/g	¢	01/10/14 11:33	01/20/14 16:28	
,2,3,4,7,8,9-HpCDF	220	G	120	120	pg/g	¢	01/10/14 11:33	01/20/14 16:28	
OCDD	5600	В	210	19	pg/g	¢	01/10/14 11:33	01/20/14 16:28	
CDF	1700	В	210	5.7	pg/g	¢	01/10/14 11:33	01/20/14 16:28	
otal TCDD	4400	q B	21	11	pg/g	¢	01/10/14 11:33	01/20/14 16:28	
otal TCDF	38000	G	110	110	pg/g	¢	01/10/14 11:33	01/20/14 16:28	
Total PeCDD	5000	q	100	52	pg/g	¢.	01/10/14 11:33	01/20/14 16:28	
			100	50	1.	×			

TestAmerica Honolulu

01/20/14 16:28

01/20/14 16:28

01/20/14 16:28

01/20/14 16:28

¢

₽

¢

¢

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

50 pg/g

9.1 pg/g

81 pg/g

16 pg/g

www.carrollcoജംcoണം808-782-6627

100

100

100

100

24000 q

16000 q B

4900 B

5700

20

20

20

20

Client Sample ID: RHS-01 Date Collected: 12/20/13 15:00 Date Received: 12/23/13 13:10

TestAmerica	Job	ID:	HWL0089

Lab Sample ID: HWL0089-01 Matrix: Solid/Soil

Percent Solids: 94.9

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HpCDF	8900	G B	110	110	pg/g	¢	01/10/14 11:33	01/20/14 16:28	20
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C-2,3,7,8-TCDD	73		40 - 135				01/10/14 11:33	01/20/14 16:28	20
13C-2,3,7,8-TCDF	78		40 - 135				01/10/14 11:33	01/20/14 16:28	20
13C-1,2,3,7,8-PeCDD	80		40 - 135				01/10/14 11:33	01/20/14 16:28	20
13C-1,2,3,7,8-PeCDF	80		40 - 135				01/10/14 11:33	01/20/14 16:28	20
13C-1,2,3,6,7,8-HxCDD	62		40 - 135				01/10/14 11:33	01/20/14 16:28	20
13C-1,2,3,4,7,8-HxCDF	58		40 - 135				01/10/14 11:33	01/20/14 16:28	20
13C-1,2,3,4,6,7,8-HpCDD	49		40 - 135				01/10/14 11:33	01/20/14 16:28	20
13C-1,2,3,4,6,7,8-HpCDF	54		40 - 135				01/10/14 11:33	01/20/14 16:28	20
13C-OCDD	50		40 - 135				01/10/14 11:33	01/20/14 16:28	20
Method: 8290 - Dioxins and Furans									
Analyte		Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	1400		21	3.2	pg/g	\$	01/10/14 11:33	01/17/14 20:40	20
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C-2,3,7,8-TCDF	69		40 - 135				01/10/14 11:33	01/17/14 20:40	20
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	43		6.2		mg/Kg	<u></u>	12/30/13 12:18	12/31/13 11:27	10
Barium	940		1.0		mg/Kg	¢	12/30/13 12:18	12/31/13 11:27	10
Cadmium	26		2.1		mg/Kg	¢	12/30/13 12:18	12/31/13 11:27	10
Chromium	210		2.7		mg/Kg	¢	12/30/13 12:18	12/31/13 11:27	10
Lead	5300		3.1		mg/Kg	₽	12/30/13 12:18	12/31/13 11:27	10
Selenium	ND		10		mg/Kg	¢	12/30/13 12:18	12/31/13 11:27	10
Silver	14		5.2		mg/Kg	¢	12/30/13 12:18	12/31/13 11:27	1(
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
						— —		-	

TestAmerica Honolulu

www.carrollcox.com.808-782-6627

1 2 3 4 5 6 7 8 9 10 11

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

				Percent Su	rogate Reco	very (Accept	ance Limits)	
		ТВР	2FP	NBZ	PHL	TPH	FBP	
Lab Sample ID	Client Sample ID	(35-125)	(25-120)	(30-120)	(35-120)	(40-135)	(35-120)	
LCS 440-153305/2-A	Lab Control Sample	86	83	74	74	99	80	
LCSD 440-153305/3-A	Lab Control Sample Dup	88	86	77	76	94	92	
MB 440-153305/1-A	Method Blank	89	87	76	75	99	90	
Surrogate Legend								
TBP = $2,4,6$ -Tribromoph								
2FP = 2-Fluorophenol (S								
NBZ = Nitrobenzene-d5	(Surr)							
PHL = Phenol-d6 (Surr)								
TPH = Terphenyl-d14 (S	Surr)							
FBP = 2-Fluorobiphenyl								

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Matrix:	So	lid	/So	il
waun.	30	nu	30	

				Percent Su	rrogate Reco	very (Accept	ance Limits)	
		TBP	2FP	NBZ	PHL	TPH	FBP	
Lab Sample ID	Client Sample ID	(35-125)	(25-120)	(30-120)	(35-120)	(40-135)	(35-120)	- 1
HWL0089-01	RHS-01	40	41	52	45	79	69	
Surrogate Legend								
TBP = 2,4,6-Tribrom	nophenol (Surr)							
2FP = 2-Fluorophen	nol (Surr)							
NBZ = Nitrobenzene	e-d5 (Surr)							
PHL = Phenol-d6 (S	Surr)							
TPH = Terphenyl-d1	14 (Surr)							
FBP = 2-Fluorobiph	enyl							
-								

Method: 8015B - Diesel Range Organics (DRO) (GC) Matrix: Solid

Matrix: Solid		>	Prep Type: Total/NA
-			Percent Surrogate Recovery (Acceptance Limits)
		OTC1	
Lab Sample ID	Client Sample ID	(40-140)	
440-65826-A-1-B MS	Matrix Spike	78	
440-65826-A-1-C MSD	Matrix Spike Duplicate	76	
LCS 440-153196/2-A	Lab Control Sample	72	
MB 440-153196/1-A	Method Blank	73	
Surrogate Legend			
OTC = n-Octacosane			

Method: 8015B - Diesel Range Organics (DRO) (GC) Matrix: Solid/Soil

Prep Type: Total/NA

Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		OTC1						
Lab Sample ID	Client Sample ID	(40-140)						
HWL0089-01	RHS-01	63						
Surrogate Legend								

TestAmerica Honolulu

1/24/2014

www.carrollcoകംcoണം808-782-6627

Matrix: Solid

Method: 8081A - Organochlorine Pesticides (GC)

Prep Type: Total/NA

2 3 4 5 6 7 8 9 10

Percent Surrogate Recovery (Acceptance Limits) TCX2 DCB2 (35-115) (45-120) Lab Sample ID **Client Sample ID** LCS 440-153161/2-A Lab Control Sample 78 96 LCSD 440-153161/3-A Lab Control Sample Dup 80 98 MB 440-153161/1-A Method Blank 72 96 Surrogate Legend TCX = Tetrachloro-m-xylene DCB = DCB Decachlorobiphenyl (Surr) Method: 8081A - Organochlorine Pesticides (GC) Matrix: Solid/Soil Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) TCX2 DCB2 (35-115) (45-120) Lab Sample ID **Client Sample ID** HWL0089-01 RHS-01 67 96 Surrogate Legend TCX = Tetrachloro-m-xylene DCB = DCB Decachlorobiphenyl (Surr) Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Matrix: Solid Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) DCB1 Lab Sample ID **Client Sample ID** (45 - 120)440-66257-E-2-A MS Matrix Spike 75 p 440-66257-E-2-B MSD Matrix Spike Duplicate 74 p LCS 440-153161/4-A Lab Control Sample 94 MB 440-152687/1-A Method Blank 97 Surrogate Legend DCB = DCB Decachlorobiphenyl (Surr)

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Matrix: Solid/Soil

			Percent Surrogate Recovery (Acceptance Limits)
		DCB1	
Lab Sample ID	Client Sample ID	(45-120)	
HWL0089-01	RHS-01	78	
Surrogate Legend			
DCB = DCB Decach	lorobiphenyl (Surr)		

TestAmerica Honolulu

Prep Type: Total/NA

www.carrollcoകംഞെം808-782-6627

Lab Sample ID: MB 440-153305/1-A

Client Sample ID: Method Blank

2 3 4 5 6

14 15

www.carrollcox.com.808-782-6627

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Analysis Batch: 153775	_							Prep Type: 1 Prep Batch:	
Analyte	MB Result	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2,4-Trichlorobenzene	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
1,2-Dichlorobenzene	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
1,3-Dichlorobenzene	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
1,4-Dichlorobenzene	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
1-Methylnaphthalene	ND		0.35		mg/Kg		12/30/13 08:15	01/02/14 13:01	
2,4,5-Trichlorophenol	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
2,4,6-Trichlorophenol	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
2,4-Dichlorophenol	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
2,4-Dimethylphenol	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
2,4-Dinitrophenol	ND		0.66		mg/Kg		12/30/13 08:15	01/02/14 13:01	
2,4-Dinitrotoluene	ND		0.33				12/30/13 08:15	01/02/14 13:01	
2,6-Dinitrotoluene	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
2-Chloronaphthalene	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
2-Chlorophenol	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
2-Methylnaphthalene	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
2-Methylphenol	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
2-Nitroaniline	ND		0.33				12/30/13 08:15	01/02/14 13:01	
2-Nitrophenol	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
3,3'-Dichlorobenzidine	ND		0.83		mg/Kg		12/30/13 08:15	01/02/14 13:01	
3-Methylphenol + 4-Methylphenol	ND		0.33		mg/Kg mg/Kg		12/30/13 08:15	01/02/14 13:01	
3-Nitroaniline	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
4,6-Dinitro-2-methylphenol	ND		0.42		mg/Kg		12/30/13 08:15	01/02/14 13:01	
4-Bromophenyl phenyl ether	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
4-Chloro-3-methylphenol	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
4-Chloroaniline	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
4-Chlorophenyl phenyl ether	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
4-Nitroaniline	ND		0.83		mg/Kg		12/30/13 08:15	01/02/14 13:01	
4-Nitrophenol	ND		0.83		mg/Kg		12/30/13 08:15	01/02/14 13:01	
Acenaphthene	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
Acenaphthylene	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
Anthracene	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
Benzo[a]anthracene	ND		0.33				12/30/13 08:15	01/02/14 13:01	
Benzo[a]pyrene	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
Benzo[b]fluoranthene	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
Benzo[g,h,i]perylene	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
Benzo[k]fluoranthene	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
Benzoic acid	ND		0.83		mg/Kg		12/30/13 08:15	01/02/14 13:01	
Benzyl alcohol	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
bis (2-chloroisopropyl) ether	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
Bis(2-chloroethoxy)methane	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
Bis(2-chloroethyl)ether	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
Bis(2-ethylhexyl) phthalate	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
Butyl benzyl phthalate	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
Carbazole	ND		0.33	0.13	mg/Kg		12/30/13 08:15	01/02/14 13:01	
Chrysene	ND		0.33		mg/Kg		12/30/13 08:15	01/02/14 13:01	
Dibenz(a,h)anthracene	ND		0.42	0.10	mg/Kg		12/30/13 08:15	01/02/14 13:01	
Dibenzofuran	ND		0.33	0.067	mg/Kg		12/30/13 08:15	01/02/14 13:01	
Diethyl phthalate	ND		0.33	0.095	mg/Kg		12/30/13 08:15	01/02/14 13:01	

TestAmerica Honolulu

1/24/2014

Analysis Batch: 153775

Matrix: Solid

Lab Sample ID: MB 440-153305/1-A

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 153305

9

1

1

2/30/13 08:15	01/02/14 13:01	1	
Prepared	Analyzed	Dil Fac	
2/30/13 08:15	01/02/14 13:01	1	
2/30/13 08:15	01/02/14 13:01	1	
2/20/12 08.15	01/02/14 12:01	1	

01/02/14 13:01

Client Sample ID: Lab Control Sample

12/30/13 08:15 01/02/14 13:01

12/30/13 08:15

Prep Type: Total/NA

99

90

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Analysis Datch. 199779								Thep Daten.	100000
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dimethyl phthalate	ND		0.33	0.067	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
Di-n-butyl phthalate	ND		0.33	0.090	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
Di-n-octyl phthalate	ND		0.33	0.090	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
Fluoranthene	ND		0.33	0.070	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
Fluorene	ND		0.33	0.070	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
Hexachlorobenzene	ND		0.33	0.070	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
Hexachlorobutadiene	ND		0.33	0.13	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
Hexachlorocyclopentadiene	ND		0.83	0.13	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
Hexachloroethane	ND		0.33	0.13	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
Indeno[1,2,3-cd]pyrene	ND		0.33	0.13	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
Isophorone	ND		0.33	0.067	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
Naphthalene	ND		0.33	0.067	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
Nitrobenzene	ND		0.33	0.070	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
N-Nitrosodi-n-propylamine	ND		0.25	0.070	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
N-Nitrosodiphenylamine	ND		0.33	0.080	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
Pentachlorophenol	0.191	J	0.83	0.15	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
Phenanthrene	ND		0.33	0.067	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
Phenol	ND		0.33	0.090	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
Pyrene	ND		0.33	0.080	mg/Kg		12/30/13 08:15	01/02/14 13:01	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	89		35 - 125				12/30/13 08:15	01/02/14 13:01	1
2-Fluorophenol (Surr)	87		25 - 120				12/30/13 08:15	01/02/14 13:01	1
Nitrobenzene-d5 (Surr)	76		30 - 120				12/30/13 08:15	01/02/14 13:01	1
Phenol-d6 (Surr)	75		35 - 120				12/30/13 08:15	01/02/14 13:01	1

Lab Sample ID: LCS 440-153305/2-A Matrix: Solid Analysis Batch: 153775

Terphenyl-d14 (Surr)

2-Fluorobiphenyl

Analysis Batch: 153775	Spike	LCS	LCS				Prep Batch: 153305 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2,4-Trichlorobenzene	3.33	2.70		mg/Kg		81	40 - 120
1,2-Dichlorobenzene	3.33	2.56		mg/Kg		77	40 - 120
1,3-Dichlorobenzene	3.33	2.45		mg/Kg		74	35 - 120
1,4-Dichlorobenzene	3.33	2.53		mg/Kg		76	35 - 120
2,4,5-Trichlorophenol	3.33	3.37		mg/Kg		101	50 - 120
2,4,6-Trichlorophenol	3.33	3.26		mg/Kg		98	50 - 120
2,4-Dichlorophenol	3.33	3.20		mg/Kg		96	45 - 120
2,4-Dimethylphenol	3.33	2.82		mg/Kg		85	40 - 120
2,4-Dinitrophenol	3.33	3.23		mg/Kg		97	25 - 120
2,4-Dinitrotoluene	3.33	3.41		mg/Kg		102	55 - 125
2,6-Dinitrotoluene	3.33	3.41		mg/Kg		102	55 - 125
2-Chloronaphthalene	3.33	2.77		mg/Kg		83	45 - 120
2-Chlorophenol	3.33	2.86		mg/Kg		86	40 - 120
2-Methylnaphthalene	3.33	2.86		mg/Kg		86	45 - 120
2-Methylphenol	3.33	2.85		mg/Kg		85	40 - 120

40 - 135

35 - 120

TestAmerica Honolulu

Lab Sample ID: LCS 440-153305/2-A

Client Sample ID: Lab Control Sample

Method: 8270C - Semivolatile Or	ganic Compounds	(GC/MS)	(Continued)
	yanic compounds		(Continueu)

Matrix: Solid							Prep Type: Total/
Analysis Batch: 153775							Prep Batch: 1533
	Spike		LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
2-Nitroaniline	3.33	3.00		mg/Kg		90	50 ₋ 125
2-Nitrophenol	3.33	2.99		mg/Kg		90	45 ₋ 120
3,3'-Dichlorobenzidine	3.33	2.52		mg/Kg		76	20 - 130
3-Methylphenol + 4-Methylphenol	3.33	2.85		mg/Kg		85	50 - 120
3-Nitroaniline	3.33	2.76		mg/Kg		83	35 - 120
4,6-Dinitro-2-methylphenol	3.33	3.12		mg/Kg		94	40 - 120
4-Bromophenyl phenyl ether	3.33	3.09		mg/Kg		93	45 - 120
4-Chloro-3-methylphenol	3.33	3.15		mg/Kg		95	50 - 125
4-Chloroaniline	3.33	1.83		mg/Kg		55	20 - 120
4-Chlorophenyl phenyl ether	3.33	3.20		mg/Kg		96	55 ₋ 120
4-Nitroaniline	3.33	3.41		mg/Kg		102	45 - 125
4-Nitrophenol	3.33	3.00		mg/Kg		90	40 - 125
Acenaphthene	3.33	2.97		mg/Kg		89	50 ₋ 120
Acenaphthylene	3.33	3.22		mg/Kg		97	50 ₋ 120
Anthracene	3.33	3.21		mg/Kg		96	55 ₋ 120
Benzo[a]anthracene	3.33	3.11		mg/Kg		93	55 - 120
Benzo[a]pyrene	3.33	3.05		mg/Kg		92	50 - 125
Benzo[b]fluoranthene	3.33	2.81		mg/Kg		84	45 - 125
Benzo[g,h,i]perylene	3.33	3.40		mg/Kg		102	35 - 130
Benzo[k]fluoranthene	3.33	3.12		mg/Kg		93	45 - 125
Benzoic acid	3.33	3.07		mg/Kg		92	20 - 120
Benzyl alcohol	3.33	2.48		mg/Kg		75	35 - 120
bis (2-chloroisopropyl) ether	3.33	2.40		mg/Kg		62	40 - 120
Bis(2-chloroethoxy)methane	3.33	2.00		mg/Kg		81	45 ₋ 120
	3.33	2.70				76	45 - 120 35 - 120
Bis(2-chloroethyl)ether	3.33			mg/Kg			
Bis(2-ethylhexyl) phthalate	3.33	3.58		mg/Kg		107	50 - 130 50 - 135
Butyl benzyl phthalate		3.30		mg/Kg		99	50 - 125
Chrysene Diteore (a b) anthrough	3.33	3.13		mg/Kg		94	55 ₋ 120
Dibenz(a,h)anthracene	3.33	3.43		mg/Kg		103	40 ₋ 135
Dibenzofuran	3.33	3.04		mg/Kg		91	55 - 120
Diethyl phthalate	3.33	3.37		mg/Kg		101	50 - 125
Dimethyl phthalate	3.33	3.24		mg/Kg		97	50 - 125
Di-n-butyl phthalate	3.33	3.41		mg/Kg		102	50 - 125
Di-n-octyl phthalate	3.33	3.55		mg/Kg		107	50 - 135
Fluoranthene	3.33	3.23		mg/Kg		97	55 - 120
Fluorene	3.33	3.21		mg/Kg		96	55 - 120
Hexachlorobenzene	3.33	2.96		mg/Kg		89	50 - 120
Hexachlorobutadiene	3.33	2.70		mg/Kg		81	40 - 120
Hexachlorocyclopentadiene	3.33	2.78		mg/Kg		83	30 - 125
Hexachloroethane	3.33	2.46		mg/Kg		74	40 - 120
Indeno[1,2,3-cd]pyrene	3.33	3.74		mg/Kg		112	30 - 135
Isophorone	3.33	2.73		mg/Kg		82	40 - 120
Naphthalene	3.33	2.68		mg/Kg		81	45 - 120
Nitrobenzene	3.33	2.55		mg/Kg		77	45 ₋ 120
N-Nitrosodi-n-propylamine	3.33	2.28		mg/Kg		68	40 - 120
N-Nitrosodiphenylamine	3.33	2.85		mg/Kg		86	50 - 120
Pentachlorophenol	3.33	3.19		mg/Kg		96	40 - 120
Phenanthrene	3.33	3.08		mg/Kg		92	50 ₋ 120

TestAmerica Honolulu

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

. . .

Lab Sample ID: LCS 440-153305/2-A Matrix: Solid		Client	Sample	ID: Lab Control Sample Prep Type: Total/NA				
Analysis Batch: 153775							Prep Batch: 153305	5
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Phenol	3.33	2.83		mg/Kg		85	40 - 120	-
Pyrene	3.33	3.33		mg/Kg		100	45 - 125	

Spike

Added

LCSD LCSD

Result Qualifier

Unit

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	86		35 - 125
2-Fluorophenol (Surr)	83		25 - 120
Nitrobenzene-d5 (Surr)	74		30 - 120
Phenol-d6 (Surr)	74		35 - 120
Terphenyl-d14 (Surr)	99		40 - 135
2-Fluorobiphenyl	80		35 - 120

Lab Sample ID: LCSD 440-153305/3-A Matrix: Solid

Analysis Batch: 153775

3-Methylphenol + 4-Methylphenol

4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline

4-Chlorophenyl phenyl ether

3-Nitroaniline

4-Nitroaniline

4-Nitrophenol

Acenaphthene

Anthracene

Acenaphthylene

Benzo[a]pyrene

Benzo[a]anthracene

1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine

Analyte

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

%Rec.

Limits

Prep Batch: 153305 RPD

Limit

RPD

9

3.33	2.73	mg/Kg	82	40 - 120	1	20	4.4
3.33	2.62	mg/Kg	79	40 - 120	2	20	14
3.33	2.49	mg/Kg	75	35 _ 120	2	25	45
3.33	2.52	mg/Kg	75	35 _ 120	1	25	15
3.33	3.43	mg/Kg	103	50 _ 120	2	20	10
3.33	3.54	mg/Kg	106	50 - 120	8	20	16
3.33	3.23	mg/Kg	97	45 - 120	1	20	
3.33	2.82	mg/Kg	84	40 _ 120	0	20	
3.33	2.85	mg/Kg	85	25 _ 120	13	25	
3.33	2.62 *	mg/Kg	79	55 _ 125	26	20	
3.33	2.98	mg/Kg	89	55 _ 125	14	20	
3.33	3.04	mg/Kg	91	45 - 120	9	20	
3.33	3.07	mg/Kg	92	40 _ 120	7	20	
3.33	2.70	mg/Kg	81	45 _ 120	6	20	
3.33	3.00	mg/Kg	90	40 - 120	5	20	
3.33	2.76	mg/Kg	83	50 _ 125	8	20	
3.33	3.26	mg/Kg	98	45 - 120	9	20	
3.33	2.29	mg/Kg	69	20 - 130	10	25	
3.33	3.01	mg/Kg	90	50 _ 120	5	20	
3.33	2.03 *	mg/Kg	61	35 - 120	30	25	
3.33	3.09	mg/Kg	93	40 _ 120	1	25	
3.33	3.33	mg/Kg	100	45 - 120	7	20	
3.33	2.77	mg/Kg	83	50 ₋ 125	13	20	
3.33	1.52	mg/Kg	46	20 - 120	19	30	
3.33	2.84	mg/Kg	85	55 ₋ 120	12	20	

72

67

87

96

93

91

90

45 - 125

40 - 125

50 - 120

50 - 120

55 - 120

55 - 120

50 - 125

D

%Rec

TestAmerica Honolulu

www.carrollcox.com.808-782-6627

2.41 *

2.24

2.89

3.21

3.11

3.04

2.99

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

3.33

3.33

3.33

3.33

3.33

3.33

3.33

34

29

2

0

3

2

2

20

20

20

20

20

20

20

5

9

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid							Prep T	ype: Tot	e Dup tal/NA
Analysis Batch: 153775								Batch: 1	
	Spike	LCSD	LCSD				%Rec.		RPI
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzo[b]fluoranthene	3.33	2.74		mg/Kg		82	45 _ 125	3	2
Benzo[g,h,i]perylene	3.33	3.39		mg/Kg		102	35 _ 130	0	2
Benzo[k]fluoranthene	3.33	3.09		mg/Kg		93	45 _ 125	1	2
Benzoic acid	3.33	3.32		mg/Kg		100	20 - 120	8	3
Benzyl alcohol	3.33	2.70		mg/Kg		81	35 _ 120	8	2
bis (2-chloroisopropyl) ether	3.33	2.07		mg/Kg		62	40 - 120	0	20
Bis(2-chloroethoxy)methane	3.33	2.78		mg/Kg		84	45 ₋ 120	3	20
Bis(2-chloroethyl)ether	3.33	2.59		mg/Kg		78	35 _ 120	2	2
Bis(2-ethylhexyl) phthalate	3.33	3.56		mg/Kg		107	50 - 130	1	20
Butyl benzyl phthalate	3.33	3.20		mg/Kg		96	50 _ 125	3	2
Chrysene	3.33	3.08		mg/Kg		92	55 - 120	2	20
Dibenz(a,h)anthracene	3.33	3.42		mg/Kg		103	40 _ 135	0	2
Dibenzofuran	3.33	2.85		mg/Kg		85	55 ₋ 120	7	2
Diethyl phthalate	3.33	2.72	*	mg/Kg		81	50 ₋ 125	21	2
Dimethyl phthalate	3.33	2.92		mg/Kg		88	50 _ 125	10	2
Di-n-butyl phthalate	3.33	3.12		mg/Kg		94	50 - 125	9	20
Di-n-octyl phthalate	3.33	3.52		mg/Kg		106	50 _ 135	1	2
Fluoranthene	3.33	2.94		mg/Kg		88	55 _ 120	9	2
Fluorene	3.33	2.74		mg/Kg		82	55 - 120	16	20
Hexachlorobenzene	3.33	3.08		mg/Kg		92	50 _ 120	4	2
Hexachlorobutadiene	3.33	2.68		mg/Kg		80	40 - 120	1	20
Hexachlorocyclopentadiene	3.33	3.55		mg/Kg		106	30 _ 125	24	2
Hexachloroethane	3.33	2.48		mg/Kg		74	40 _ 120	1	20
Indeno[1,2,3-cd]pyrene	3.33	3.72		mg/Kg		112	30 _ 135	0	2
Isophorone	3.33	2.71		mg/Kg		81	40 _ 120	0	2
Naphthalene	3.33	2.71		mg/Kg		81	45 - 120	1	2
Nitrobenzene	3.33	2.62		mg/Kg		79	45 ₋ 120	3	20
N-Nitrosodi-n-propylamine	3.33	2.43		mg/Kg		73	40 _ 120	6	2
N-Nitrosodiphenylamine	3.33	3.12		mg/Kg		94	50 ₋ 120	9	2
Pentachlorophenol	3.33	3.16		mg/Kg		95	40 _ 120	1	2
Phenanthrene	3.33	3.00		mg/Kg		90	50 - 120	3	20
Phenol	3.33	3.02		mg/Kg		91	40 _ 120	7	2
Pyrene	3.33	3.23		mg/Kg		97	45 - 125	3	2

	LUUD	LOOD	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	88		35 - 125
2-Fluorophenol (Surr)	86		25 - 120
Nitrobenzene-d5 (Surr)	77		30 - 120
Phenol-d6 (Surr)	76		35 - 120
Terphenyl-d14 (Surr)	94		40 - 135
2-Fluorobiphenyl	92		35 - 120

TestAmerica Honolulu

TestAmerica Job ID: HWL0089

2 3 4 5 6 7 8 9 10 11 12 13

Lab Sample ID: MB 440-153	196/1-A									Client Sa	ample ID:	Method	l Blank
Matrix: Solid											Prep 1	ype: To	otal/NA
Analysis Batch: 153341											Prep	Batch: '	153196
		MB	MB										
Analyte	Re	esult	Qualifier	RL		MDL	Unit	D	F	Prepared	Analy	zed	Dil Fac
DRO (C10-C28)		ND		5.0		2.5	mg/Kg		12/2	28/13 07:03	12/30/13	08:15	1
RRO(C29-C40)		ND		5.0		2.5	mg/Kg		12/2	28/13 07:03	12/30/13	08:15	1
		ΜВ	МВ										
Surrogate	%Reco	very	Qualifier	Limits					I	Prepared	Analy	zed	Dil Fac
n-Octacosane		73		40 - 140					12/	28/13 07:03	12/30/13	08:15	1
Lab Sample ID: LCS 440-153	R196/2-A								Clien	t Samnle	ID: Lab C	ontrol S	Samnlo
Matrix: Solid	100/2-4								onen	(Gampie		ype: To	
Analysis Batch: 153341												Batch:	
Analysis Batch. 100041				Spike	LCS	LCS					%Rec.	Datem.	100100
Analyte				Added	Result		lifier Uı	nit	D	%Rec	Limits		
DRO (C10-C28)				33.3	20.9			g/Kg		63	45 - 115		
	LCS												
Surrogate	%Recovery	Quali	ifier	Limits									
n-Octacosane	72			40 - 140									
_ Lab Sample ID: 440-65826-A	-1-B MS									Client	Sample ID	: Matrix	c Spike
Matrix: Solid												ype: To	
Analysis Batch: 153341												Batch:	
,,	Sample	Samp	ole	Spike	мз	MS					%Rec.		
Analyte	Result	Quali	fier	Added	Result	Qua	lifier Uı	nit	D	%Rec	Limits		
DRO (C10-C28)	ND			33.4	22.1	-	m	g/Kg		66	40 - 120		
	MS	MS											
Surrogate		Quali	fier	Limits									
n-Octacosane 	78			40 - 140									
 Lab Sample ID: 440-65826-A	-1-C MSD							Cli	ent S	ample ID	Matrix S	pike Du	plicate
Matrix: Solid											Prep 1	ype: To	otal/NA
Analysis Batch: 153341											Prep	Batch: *	153196
	Sample	Samp	ble	Spike	MSD	MSD)				%Rec.		RPD
Analyte	Result	Quali	fier	Added	Result	Qua	lifier Uı	nit	D	%Rec	Limits	RPD	Limit
DRO (C10-C28)	ND			33.4	21.8		m	g/Kg		65	40 - 120	1	30
	MSD	MSD											
0	%Recovery	Quali	ifior	Limits									
Surrogate	%Recovery	Quan	nei	Linits									

Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 440-153161/1-A Matrix: Solid Analysis Batch: 153523	МВ	МВ					Client Sa	mple ID: Metho Prep Type: T Prep Batch:	otal/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.0050	0.0015	mg/Kg		12/27/13 17:32	12/31/13 14:09	1
4,4'-DDE	ND		0.0050	0.0015	mg/Kg		12/27/13 17:32	12/31/13 14:09	1
4,4'-DDT	ND		0.0050	0.0015	mg/Kg		12/27/13 17:32	12/31/13 14:09	1
Aldrin	ND		0.0050	0.0015	mg/Kg		12/27/13 17:32	12/31/13 14:09	1

TestAmerica Honolulu

RL

0.0050

0.0050

0.050

0.010

0.0050

0.0050

0.0050

0.010

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

Limits

35 - 115

45 - 120

0.20

MDL Unit

0.0015 mg/Kg

0.0015 mg/Kg

0.010 mg/Kg

0.0015 mg/Kg

0.0015 mg/Kg

0.0015 mg/Kg

0.0015 mg/Kg

0.0020 mg/Kg

0.0015 mg/Kg

0.0015 mg/Kg

0.0020 mg/Kg

0.0015 mg/Kg

0.0020 mg/Kg

0.0020 mg/Kg

0.0015 mg/Kg

0.050 mg/Kg

Analysis Batch: 153523

Matrix: Solid

Analyte

alpha-BHC

beta-BHC

delta-BHC

Endosulfan I

Endosulfan II

Endosulfan sulfate

Endrin aldehyde

gamma-BHC (Lindane)

Heptachlor epoxide

Tetrachloro-m-xylene

Endrin ketone

Heptachlor

Methoxychlor

Toxaphene

Surrogate

Dieldrin

Endrin

Chlordane (technical)

Lab Sample ID: MB 440-153161/1-A

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

MB MB Result Qualifier

ND

72

96

%Recovery

MB MB

Qualifier

Client Sample ID: Method Blank

Analyzed

12/31/13 14:09

12/31/13 14:09

12/31/13 14:09

12/31/13 14:09

12/31/13 14:09

12/31/13 14:09

12/31/13 14:09

12/31/13 14:09

12/31/13 14:09

12/31/13 14:09

12/31/13 14:09

12/31/13 14:09

12/31/13 14:09

12/31/13 14:09

12/31/13 14:09

12/31/13 14.09

Analyzed

12/31/13 14:09

12/31/13 14:09

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prepared

12/27/13 17:32

12/27/13 17:32

12/27/13 17:32

12/27/13 17:32

12/27/13 17:32

12/27/13 17:32

12/27/13 17:32

12/27/13 17:32

12/27/13 17:32

12/27/13 17:32

12/27/13 17:32

12/27/13 17:32

12/27/13 17:32

12/27/13 17:32

12/27/13 17:32

12/27/13 17:32

Prepared

12/27/13 17:32

12/27/13 17:32

D

Prep Type: Total/NA

Prep Batch: 153161

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

1

1

9

Lab Sample ID: LCS 440-153161/2-A Matrix: Solid

Analysis Batch: 153523

DCB Decachlorobiphenyl (Surr)

Analysis Batch: 153523			Spike	201	LCS				Prep Batch: 153161 %Rec.
Analyte			Added		Qualifier	Unit	D	%Rec	Limits
4,4'-DDD			0.0333	0.0344		mg/Kg		103	60 - 120
4.4'-DDE			0.0333	0.0318		mg/Kg		95	60 - 120
4,4'-DDT			0.0333	0.0298		mg/Kg		90	65 - 120
Aldrin			0.0333	0.0283		mg/Kg		85	50 ₋ 115
alpha-BHC			0.0333	0.0288		mg/Kg		87	60 - 115
beta-BHC			0.0333	0.0293		mg/Kg		88	60 - 115
delta-BHC			0.0333	0.0317		mg/Kg		95	60 - 115
Dieldrin			0.0333	0.0311		mg/Kg		93	65 - 115
Endosulfan I			0.0333	0.0303		mg/Kg		91	40 - 120
Endosulfan II			0.0333	0.0318		mg/Kg		95	55 - 120
Endosulfan sulfate			0.0333	0.0332		mg/Kg		100	65 ₋ 115
Endrin			0.0333	0.0287		mg/Kg		86	55 - 120
Endrin aldehyde			0.0333	0.0266		mg/Kg		80	55 ₋ 115
Endrin ketone			0.0333	0.0325		mg/Kg		97	65 - 115
gamma-BHC (Lindane)			0.0333	0.0291		mg/Kg		87	55 _ 115
Heptachlor			0.0333	0.0272		mg/Kg		82	55 _ 115
Heptachlor epoxide			0.0333	0.0297		mg/Kg		89	55 - 115
Methoxychlor			0.0333	0.0292		mg/Kg		88	65 - 120
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
Tetrachloro-m-xylene	78		35 - 115						

J		
Tetrachloro-m-xylene	78	 35 - 115

TestAmerica Honolulu

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 440-153161/2-A Matrix: Solid

Analysis Batch: 153523

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	96		45 _ 120

Lab Sample ID: LCSD 440-153161/3-A Matrix: Solid

Analy	veie	Batch:	153523
Allal	7 212	Datti.	199929

Analysis Batch: 153523	: 153523								Prep Batch: 1531		53161
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD			0.0333	0.0352		mg/Kg		106	60 - 120	2	30
4,4'-DDE			0.0333	0.0323		mg/Kg		97	60 - 120	2	30
4,4'-DDT			0.0333	0.0298		mg/Kg		89	65 _ 120	0	30
Aldrin			0.0333	0.0287		mg/Kg		86	50 ₋ 115	1	30
alpha-BHC			0.0333	0.0292		mg/Kg		88	60 _ 115	1	30
beta-BHC			0.0333	0.0299		mg/Kg		90	60 - 115	2	30
delta-BHC			0.0333	0.0324		mg/Kg		97	60 _ 115	2	30
Dieldrin			0.0333	0.0316		mg/Kg		95	65 - 115	2	30
Endosulfan I			0.0333	0.0308		mg/Kg		92	40 - 120	2	30
Endosulfan II			0.0333	0.0325		mg/Kg		98	55 _ 120	2	30
Endosulfan sulfate			0.0333	0.0343		mg/Kg		103	65 - 115	3	30
Endrin			0.0333	0.0287		mg/Kg		86	55 ₋ 120	0	30
Endrin aldehyde			0.0333	0.0277		mg/Kg		83	55 - 115	4	30
Endrin ketone			0.0333	0.0338		mg/Kg		102	65 ₋ 115	4	30
gamma-BHC (Lindane)			0.0333	0.0295		mg/Kg		89	55 ₋ 115	1	30
Heptachlor			0.0333	0.0274		mg/Kg		82	55 ₋ 115	1	30
Heptachlor epoxide			0.0333	0.0300		mg/Kg		90	55 ₋ 115	1	30
Methoxychlor			0.0333	0.0295		mg/Kg		89	65 - 120	1	30
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	80		35 - 115								
DCB Decachlorobiphenyl (Surr)	98		45 - 120								

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 440-152687	//1-A						Client Sa	mple ID: Metho		
Matrix: Solid							Prep Type: Total/N			
Analysis Batch: 153427	МВ	МВ						Prep Batch:	152667	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Aroclor 1016	ND		0.050	0.017	mg/Kg		12/24/13 18:18	12/30/13 19:07	1	
Aroclor 1221	ND		0.050	0.017	mg/Kg		12/24/13 18:18	12/30/13 19:07	1	
Aroclor 1232	ND		0.050	0.017	mg/Kg		12/24/13 18:18	12/30/13 19:07	1	
Aroclor 1242	ND		0.050	0.017	mg/Kg		12/24/13 18:18	12/30/13 19:07	1	
Aroclor 1248	ND		0.050	0.017	mg/Kg		12/24/13 18:18	12/30/13 19:07	1	
Aroclor 1254	ND		0.050	0.017	mg/Kg		12/24/13 18:18	12/30/13 19:07	1	
Aroclor 1260	ND		0.050	0.017	mg/Kg		12/24/13 18:18	12/30/13 19:07	1	
	МВ	МВ								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
DCB Decachlorobiphenyl (Surr)	97		45 - 120				12/24/13 18:18	12/30/13 19:07	1	

TestAmerica Honolulu

TestAmerica Job ID: HWL0089

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 153161

Prep Type: Total/NA

9

Spike

Added

0.267

0.267

LCS LCS

0.195

0.211

Result Qualifier

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

LCS LCS

Analysis Batch: 153427

Matrix: Solid

Analyte

Aroclor 1016

Aroclor 1260

Lab Sample ID: LCS 440-153161/4-A

Prep Type: Total/NA

Prep Batch: 153161

Client Sample ID: Lab Control Sample

%Rec.

Limits

65 - 115

65 - 115

D

Unit

mg/Kg

mg/Kg

%Rec

73

79

9

ke Duplicate	
pe: Total/NA	
atch: 153161	

	200										
Surrogate	%Recovery	Qualifier	Limits								
DCB Decachlorobiphenyl (Surr)	94		45 - 120								
_ Lab Sample ID: 440-66257-E	-2-A MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid										ype: Tot	- -
Analysis Batch: 153427										Batch: 1	
· ·····, · · · · · · · · · · · · · · ·	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Aroclor 1016	ND		0.264	0.190		mg/Kg	-	72	50 - 120		
Aroclor 1260	ND		0.264	0.186		mg/Kg		70	50 ₋ 125		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
DCB Decachlorobiphenyl (Surr)	75	p	45 _ 120								
_ Lab Sample ID: 440-66257-E	-2-B MSD					с	lient Sa	ample IC): Matrix Sp	oike Dur	licate
Matrix: Solid										ype: Tot	
Analysis Batch: 153427										Batch: 1	
· ····· , · · · · · · · · · · · · · · · · · · ·	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aroclor 1016	ND		0.263	0.189		mg/Kg		72	50 - 120	0	30
Aroclor 1260	ND		0.263	0.186		mg/Kg		71	50 ₋ 125	0	30
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
DCB Decachlorobiphenyl (Surr)	74	p	45 - 120								
—											

Method: 8290 - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-33622/1-A Matrix: Solid								Client Sample ID: Method Blank Prep Type: Total/NA			
Analysis Batch: 33999								Prep Batch	n: 33622		
	MB	MB									
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac		
2,3,7,8-TCDD	ND		1.0	0.017	pg/g		01/10/14 11:33	01/15/14 00:16	1		
2,3,7,8-TCDF	ND		1.0	0.014	pg/g		01/10/14 11:33	01/15/14 00:16	1		
1,2,3,7,8-PeCDD	ND		5.0	0.025	pg/g		01/10/14 11:33	01/15/14 00:16	1		
1,2,3,7,8-PeCDF	ND		5.0	0.022	pg/g		01/10/14 11:33	01/15/14 00:16	1		
2,3,4,7,8-PeCDF	ND		5.0	0.023	pg/g		01/10/14 11:33	01/15/14 00:16	1		
1,2,3,4,7,8-HxCDD	ND		5.0	0.017	pg/g		01/10/14 11:33	01/15/14 00:16	1		
1,2,3,6,7,8-HxCDD	ND		5.0	0.039	pg/g		01/10/14 11:33	01/15/14 00:16	1		
1,2,3,7,8,9-HxCDD	ND		5.0	0.012	pg/g		01/10/14 11:33	01/15/14 00:16	1		
1,2,3,4,7,8-HxCDF	0.108	ЪГ	5.0	0.020	pg/g		01/10/14 11:33	01/15/14 00:16	1		
1,2,3,6,7,8-HxCDF	0.0417	Jд	5.0	0.015	pg/g		01/10/14 11:33	01/15/14 00:16	1		
2,3,4,6,7,8-HxCDF	0.0357	ЪС	5.0	0.017	pg/g		01/10/14 11:33	01/15/14 00:16	1		
1,2,3,7,8,9-HxCDF	ND		5.0	0.019	pg/g		01/10/14 11:33	01/15/14 00:16	1		

TestAmerica Honolulu

RL

5.0

5.0

5.0

10

10

1.0

1.0

5.0

50

5.0

5.0

5.0

5.0

Limits

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

EDL Unit

pg/g

pg/g

pg/g

0.030

0.027

0.031

0.051 pg/g

0.017 pg/g

0.014 pg/g

0.025 pg/g

0.039

0.030

0.043 pg/g

0.023 pg/g

0.018 pg/g

0.029 pg/g

pg/g

pg/g

D

Prepared

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

Prepared

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

01/10/14 11:33

Matrix: Solid

1,2,3,4,6,7,8-HpCDD

1,2,3,4,6,7,8-HpCDF

1,2,3,4,7,8,9-HpCDF

Analyte

OCDD

OCDF

Total TCDD

Total TCDF

Total PeCDD

Total PeCDF

Total HxCDD

Total HxCDF

Total HpCDD

Total HpCDF

Isotope Dilution

13C-2,3,7,8-TCDD

13C-2,3,7,8-TCDF

13C-1,2,3,7,8-PeCDD

13C-1,2,3,7,8-PeCDF

13C-1,2,3,6,7,8-HxCDD

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,4,6,7,8-HpCDD

13C-1,2,3,4,6,7,8-HpCDF

13C-OCDD

Analysis Batch: 33999

Lab Sample ID: MB 320-33622/1-A

Method: 8290 - Dioxins and Furans (HRGC/HRMS) (Continued)

MB MB Result Qualifier

0.439 J

0.359 J

ND

6.38 J

0.486 Jq

0.0915 Jq

ND

ND

ND

ND

0.883

%Recoverv

0.186 Jq

0.492 Jq

65

56

66

62

67

55

78

69

73

MB MB

Qualifier

J

Client Sample ID: Method Blank

Analyzed

01/15/14 00:16

01/15/14 00:16

01/15/14 00:16

01/15/14 00:16

01/15/14 00:16

01/15/14 00:16

01/15/14 00:16

01/15/14 00:16

01/15/14 00.16

01/15/14 00:16

01/15/14 00:16

01/15/14 00:16

01/15/14 00:16

Analyzed

01/15/14 00:16

01/15/14 00:16

01/15/14 00.16

01/15/14 00:16

01/15/14 00:16

01/15/14 00:16

Prep Type: Total/NA

Prep Batch: 33622

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

8	
9	

-	3

01/	10/14	11:33	01/	/15/14 00:16	1	
01/	10/14	11:33	01/	/15/14 00:16	1	
01/	10/14	11:33	01/	/15/14 00:16	1	

Matrix: Solid Analysis Batch: 33999

Lab Sample ID: LCS 320-33622/2-A

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 33999							Prep Batch: 33622
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,3,7,8-TCDD	20.0	17.9		pg/g		89	60 - 138
2,3,7,8-TCDF	20.0	18.8		pg/g		94	56 - 158
1,2,3,7,8-PeCDD	100	101		pg/g		101	70 ₋ 122
1,2,3,7,8-PeCDF	100	95.0		pg/g		95	69 - 134
2,3,4,7,8-PeCDF	100	94.5		pg/g		95	70 ₋ 131
1,2,3,4,7,8-HxCDD	100	95.8		pg/g		96	60 - 138
1,2,3,6,7,8-HxCDD	100	102		pg/g		102	68 - 136
1,2,3,7,8,9-HxCDD	100	101		pg/g		101	68 - 138
1,2,3,4,7,8-HxCDF	100	99.6		pg/g		100	74 ₋ 128
1,2,3,6,7,8-HxCDF	100	105		pg/g		105	67 _ 140
2,3,4,6,7,8-HxCDF	100	109		pg/g		109	71 ₋ 137
1,2,3,7,8,9-HxCDF	100	106		pg/g		106	72 - 134
1,2,3,4,6,7,8-HpCDD	100	104		pg/g		104	71 ₋ 128
1,2,3,4,6,7,8-HpCDF	100	98.0		pg/g		98	71 ₋ 134
1,2,3,4,7,8,9-HpCDF	100	98.6		pg/g		99	68 - 129
OCDD	200	204		pg/g		102	70 - 128
OCDF	200	201		pg/g		100	63 - 141

TestAmerica Honolulu

Method: 8290 - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-33622/2-A

Matrix: Solid Analysis Batch: 33999

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	51		40 - 135
13C-2,3,7,8-TCDF	41		40 - 135
13C-1,2,3,7,8-PeCDD	52		40 - 135
13C-1,2,3,7,8-PeCDF	48		40 - 135
13C-1,2,3,6,7,8-HxCDD	52		40 - 135
13C-1,2,3,4,7,8-HxCDF	45		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	62		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	56		40 - 135
13C-OCDD	58		40 - 135

Me

Method: 6010B - Metals (ICP)									
Lab Sample ID: MB 580-151433/18- Matrix: Solid Analysis Batch: 151504							Client Sa	mple ID: Metho Prep Type: 1 Prep Batch:	Fotal/NA
	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		3.0		mg/Kg		12/30/13 12:18	12/31/13 11:13	1
Barium	ND		0.50		mg/Kg		12/30/13 12:18	12/31/13 11:13	1
O student			10				10/00/10 10 10	10/01/10 11 10	

Barium	ND	0.50	mg/Kg	12/30/13 12:18	12/31/13 11:13	1
Cadmium	ND	1.0	mg/Kg	12/30/13 12:18	12/31/13 11:13	1
Chromium	ND	1.3	mg/Kg	12/30/13 12:18	12/31/13 11:13	1
Lead	ND	1.5	mg/Kg	12/30/13 12:18	12/31/13 11:13	1
Selenium	ND	5.0	mg/Kg	12/30/13 12:18	12/31/13 11:13	1
Silver	ND	2.5	mg/Kg	12/30/13 12:18	12/31/13 11:13	1

Lab Sample ID: LCS 580-151433/19-A

Matrix: Solid Analysis Batch: 151504

Analysis Batch: 151504							Prep Bat	ch: 151433
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	200	197		mg/Kg		99	80 - 120	
Barium	200	212		mg/Kg		106	80 - 120	
Cadmium	5.00	5.15		mg/Kg		103	80 - 120	
Chromium	20.0	21.2		mg/Kg		106	80 - 120	
Lead	50.0	48.2		mg/Kg		96	80 - 120	
Selenium	200	200		mg/Kg		100	80 - 120	
Silver	30.0	29.7		mg/Kg		99	75 ₋ 120	

Lab Sample ID: LCSD 580-151433/20-A Matrix: Solid

Junio Detale 454504

Analysis Batch: 151504							Prep I	Batch: 1	51433
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	200	196		mg/Kg		98	80 - 120	1	20
Barium	200	208		mg/Kg		104	80 - 120	2	20
Cadmium	5.00	5.00		mg/Kg		100	80 - 120	3	20
Chromium	20.0	20.8		mg/Kg		104	80 - 120	2	20
Lead	50.0	47.4		mg/Kg		95	80 - 120	2	20
Selenium	200	198		mg/Kg		99	80 - 120	1	20

TestAmerica Honolulu

Prep Type: Total/NA

www.carrollcox.com.808-782-6627

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 33622

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

1/24/2014

Matrix: Solid

Analyte

Arsenic

Barium

Lead

Silver

Cadmium

Chromium

Selenium

Matrix: Solid

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCSD 580-151433/20-A

Prep Type: Total/NA

Prep Batch: 151433

Client Sample ID: Lab Control Sample Dup

%Rec.

%Rec.

Limits

9

RPD

Prep Type: Total/NA Prep Batch: 151433 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 75 - 120

Client Sample ID: HWL0089-01
Prep Type: Total/NA
Prop Potob: 151422

								Prep I	Batch: 1	51433
Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
43		41.0	84.9		mg/Kg	¢	101	80 - 120	3	20
940		41.0	943	4	mg/Kg	₽	7	80 - 120	3	20
26		1.02	29.4	4	mg/Kg	¢	297	80 - 120	6	20
210		4.10	265	4	mg/Kg	\$	1267	80 - 120	3	20
5300		10.2	6980	4 F2	mg/Kg	₽	16766	80 - 120	44	20
ND		41.0	20.1	F1	mg/Kg	₽	49	80 - 120	2	20
14		6.15	21.4	F1	mg/Kg	¢	127	75 - 120	7	20
	Result 43 940 26 210 5300 ND	940 26 210 5300 ND	Result Qualifier Added 43 41.0 940 41.0 26 1.02 210 4.10 5300 10.2 ND 41.0	Result Qualifier Added Result 43 41.0 84.9 940 41.0 943 26 1.02 29.4 210 4.10 265 5300 10.2 6980 ND 41.0 20.1	Result Qualifier Added Result Qualifier 43 41.0 84.9 41.0 943 4 940 41.0 943 4 4 26 1.02 29.4 4 210 4.10 265 4 5300 10.2 6980 4 F2 ND 41.0 20.1 F1	Result Qualifier Added Result Qualifier Unit 43 41.0 84.9 mg/Kg 940 41.0 943 4 mg/Kg 26 1.02 29.4 4 mg/Kg 210 4.10 265 4 mg/Kg 5300 10.2 6980 4 F2 mg/Kg ND 41.0 20.1 F1 mg/Kg	Result Qualifier Added Result Qualifier Unit D 43 41.0 84.9 mg/Kg img/Kg img/Kg <td< td=""><td>Result Qualifier Added Result Qualifier Unit D %Rec 43 41.0 84.9 mg/Kg indicated in the second in the seco</td><td>Sample Sample Spike MSD MSD MSD MSD %Rec. %Rec. Result Qualifier Added Result Qualifier Unit D %Rec. Limits 43 41.0 84.9 mg/Kg 3 101 80.120 940 41.0 943 4 mg/Kg 3 7 80.120 26 1.02 29.4 4 mg/Kg 3 297 80.120 210 4.10 265 4 mg/Kg 3 1267 80.120 5300 10.2 6980 4 F2 mg/Kg 3 16766 80.120 ND 41.0 20.1 F1 mg/Kg 49 80.120</td><td>Sample Spike MSD MSD MSD MSD %Rec. Limits RPD 43 41.0 84.9 mg/Kg indition 101 80.120 3 940 41.0 943 4 mg/Kg indition 7 80.120 3 26 1.02 29.4 4 mg/Kg indition 297 80.120 6 210 4.10 265 4 mg/Kg indition 1267 80.120 3 5300 10.2 6980 4 F2 mg/Kg indition 16766 80.120 44 ND 41.0 20.1 F1 mg/Kg idition 49 80.120 2</td></td<>	Result Qualifier Added Result Qualifier Unit D %Rec 43 41.0 84.9 mg/Kg indicated in the second in the seco	Sample Sample Spike MSD MSD MSD MSD %Rec. %Rec. Result Qualifier Added Result Qualifier Unit D %Rec. Limits 43 41.0 84.9 mg/Kg 3 101 80.120 940 41.0 943 4 mg/Kg 3 7 80.120 26 1.02 29.4 4 mg/Kg 3 297 80.120 210 4.10 265 4 mg/Kg 3 1267 80.120 5300 10.2 6980 4 F2 mg/Kg 3 16766 80.120 ND 41.0 20.1 F1 mg/Kg 49 80.120	Sample Spike MSD MSD MSD MSD %Rec. Limits RPD 43 41.0 84.9 mg/Kg indition 101 80.120 3 940 41.0 943 4 mg/Kg indition 7 80.120 3 26 1.02 29.4 4 mg/Kg indition 297 80.120 6 210 4.10 265 4 mg/Kg indition 1267 80.120 3 5300 10.2 6980 4 F2 mg/Kg indition 16766 80.120 44 ND 41.0 20.1 F1 mg/Kg idition 49 80.120 2

Method: 7471A - Mercury (CVAA)

Lab Sample ID: 580-41776-1 MSD

_ Lab Sample ID: MB 580-151436/8-	A ^10										Client Sa	ample ID: Meth	od Blank
Matrix: Solid												Prep Type:	Total/NA
Analysis Batch: 151495												Prep Batch	n: 151436
	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
Mercury	ND		0	0.020			mg/Kg			12/3	1/13 08:25	12/31/13 09:57	10
_ Lab Sample ID: LCS 580-151436/9	-A ^10								CI	ient	Sample	ID: Lab Contro	I Sample
Matrix: Solid												Prep Type:	Total/NA
Analysis Batch: 151495												Prep Batch	n: 151436
			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Quali	fier	Unit		D	%Rec	Limits	
Mercury			0.100		0.0994			mg/Kg		_	99	80 - 120	

TestAmerica Honolulu

LCSD LCSD Spike

MS MS

82.2

917 4

31.1 4

257 4

4440 4

20.1

19.7 F1

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

☆

₽

₽

₽

\$

₽

¢

%Rec

93

-55

449

1047

-7804

47

102

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Silver	30.0	29.6		mg/Kg		99	75 - 120	1	20
Lab Sample ID: 580-41776-1 MS						Client	Sample ID	: HWL00	89-01
Matrice Calid							Dura T		

Spike

Added

41.9

41.9

1.05

4.19

10.5

41.9

6.29

Sample Sample

43

940

26

210

5300

ND

14

Result Qualifier

Matrix: Solid Analysis Batch: 151504

Analysis Batch: 151504

www.carrollcoകംഞെം808-782-6627	

Method: 7471A - Mercury (CVAA) (Continued)

Lab Sample ID: LCSD 580-151436/10-A	^10					Clier	nt Sam	ple ID:	Lab Contro		
Matrix: Solid									Prep 1	Гуре: То	tal/NA
Analysis Batch: 151495									Prep	Batch: 1	51436
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury			0.100	0.0993		mg/Kg		99	80 - 120	0	20
Lab Sample ID: 580-41776-1 MS								Client	Sample ID	: HWL00)8 <mark>9-0</mark> 1
Matrix: Solid									Prep 1	Гуре: То	tal/NA
Analysis Batch: 151495									Prep	Batch: 1	51436
Sa	nple	Sample	Spike	MS	MS				%Rec.		
Analyte Re	sult	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury	1.1		0.100	1.35	4	mg/Kg	¢	277	80 - 120		
Lab Sample ID: 580-41776-1 MSD								Client	Sample ID): HWL0 (089-01
Matrix: Solid									Prep 1	Гуре: То	tal/NA
Analysis Batch: 151495									Prep	Batch: 1	51436
Sa	nple	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte Re	sult	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	1.1		0.103	1.44	4	mg/Kg	\$	354	80 - 120	6	20

5

TestAmerica Honolulu

GC/MS Semi VOA

Prep Batch: 153305

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
HWL0089-01	RHS-01	Total/NA	Solid/Soil	3546	
LCS 440-153305/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 440-153305/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
MB 440-153305/1-A	Method Blank	Total/NA	Solid	3546	
Analysis Batch: 15377	5				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Pr
HWL0089-01	RHS-01	Total/NA	Solid/Soil	8270C	
LCS 440-153305/2-A	Lab Control Sample	Total/NA	Solid	8270C	
LCSD 440-153305/3-A	Lab Control Sample Dup	Total/NA	Solid	8270C	
MB 440-153305/1-A	Method Blank	Total/NA	Solid	8270C	

GC Semi VOA

Prep Batch: 152687

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 440-152687/1-A	Method Blank	Total/NA	Solid	3546	
Prep Batch: 153161					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-66257-E-2-A MS	Matrix Spike	Total/NA	Solid	3546	
440-66257-E-2-B MSD	Matrix Spike Duplicate	Total/NA	Solid	3546	
HWL0089-01	RHS-01	Total/NA	Solid/Soil	3546	
HWL0089-01	RHS-01	Total/NA	Solid/Soil	3546	
LCS 440-153161/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCS 440-153161/4-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 440-153161/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
MB 440-153161/1-A	Method Blank	Total/NA	Solid	3546	

Prep Batch: 153196

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
440-65826-A-1-B MS	Matrix Spike	Total/NA	Solid	CA LUFT	
440-65826-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	CA LUFT	
HWL0089-01	RHS-01	Total/NA	Solid/Soil	CA LUFT	
LCS 440-153196/2-A	Lab Control Sample	Total/NA	Solid	CA LUFT	
MB 440-153196/1-A	Method Blank	Total/NA	Solid	CA LUFT	

Analysis Batch: 153341

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-65826-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B	153196
440-65826-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B	153196
LCS 440-153196/2-A	Lab Control Sample	Total/NA	Solid	8015B	153196
MB 440-153196/1-A	Method Blank	Total/NA	Solid	8015B	153196
Analysis Batch: 153342	2				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
HWL0089-01	RHS-01	Total/NA	Solid/Soil	8015B	153196

TestAmerica Honolulu

TestAmerica Job ID: HWL0089

GC Semi VOA (Continued)

Analysis Batch: 153427

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl	
440-66257-E-2-A MS	Matrix Spike	Total/NA	Solid	8082	153161	
440-66257-E-2-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8082	15316	
HWL0089-01	RHS-01	Total/NA	Solid/Soil	8082	15316	
_CS 440-153161/4-A	Lab Control Sample	Total/NA	Solid	8082	15316	
MB 440-152687/1-A	Method Blank	Total/NA	Solid	8082	15268	
		10 carro (Cond	0002		
nalysis Batch: 153523		Prep Type	Matrix	Method		
nalysis Batch: 153523 Lab Sample ID HWL0089-01	3				Prep Batcl	
nalysis Batch: 153523 Lab Sample ID HWL0089-01	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batcl	
nalysis Batch: 153523 Lab Sample ID	Client Sample ID RHS-01	Prep Type Total/NA	Matrix Solid/Soil	Method 8081A	Prep Batc	

Specialty Organics

Prep Batch: 33622

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
HWL0089-01 - RA	RHS-01	Total/NA	Solid/Soil	8290	
HWL0089-01	RHS-01	Total/NA	Solid/Soil	8290	
LCS 320-33622/2-A	Lab Control Sample	Total/NA	Solid	8290	
MB 320-33622/1-A	Method Blank	Total/NA	Solid	8290	
Analysis Batch: 33999	9				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 320-33622/2-A	Lab Control Sample	Total/NA	Solid	8290	33622
MB 320-33622/1-A	Method Blank	Total/NA	Solid	8290	33622
Analysis Batch: 34213	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
HWL0089-01 - RA	RHS-01	Total/NA	Solid/Soil	8290	33622
Analysis Batch: 34312	2				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
HWL0089-01	RHS-01	Total/NA	Solid/Soil	8290	33622

Metals

Prep Batch: 151433

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-41776-1 MS	HWL0089-01	Total/NA	Solid	3050B	
580-41776-1 MSD	HWL0089-01	Total/NA	Solid	3050B	
HWL0089-01	RHS-01	Total/NA	Solid/Soil	3050B	
LCS 580-151433/19-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 580-151433/20-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
MB 580-151433/18-A	Method Blank	Total/NA	Solid	3050B	
Prep Batch: 151436					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
580-41776-1 MS	HWL0089-01	Total/NA	Solid	7471A	
580-41776-1 MSD	HWL0089-01	Total/NA	Solid	7471A	

TestAmerica Honolulu

www.carrollcox.com.808-782-6627

1/24/2014

TestAmerica Job ID: HWL0089

Prep Type

Total/NA

Matrix

Solid/Soil

Prep Batch: 151436 (Continued)

Client Sample ID

RHS-01

RHS-01

Metals (Continued)

Lab Sample ID

HWL0089-01

HWL0089-01

Method

7471A

Prep Batch

10 11 12 13 14

6

LCS 580-151436/9-A ^10	Lab Control Sample	Total/NA	Solid	7471A	
LCSD 580-151436/10-A ^10	Lab Control Sample Dup	Total/NA	Solid	7471A	
MB 580-151436/8-A ^10	Method Blank	Total/NA	Solid	7471A	
Analysis Batch: 151495					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
580-41776-1 MS	HWL0089-01	Total/NA	Solid	7471A	15143
580-41776-1 MSD	HWL0089-01	Total/NA	Solid	7471A	15143
HWL0089-01	RHS-01	Total/NA	Solid/Soil	7471A	15143
LCS 580-151436/9-A ^10	Lab Control Sample	Total/NA	Solid	7471A	15143
LCSD 580-151436/10-A ^10	Lab Control Sample Dup	Total/NA	Solid	7471A	151430
MB 580-151436/8-A ^10	Method Blank	Total/NA	Solid	7471A	151430
Analysis Batch: 151504					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
580-41776-1 MS	HWL0089-01	Total/NA	Solid	6010B	151433
580-41776-1 MSD	HWL0089-01	Total/NA	Solid	6010B	15143
HWL0089-01	RHS-01	Total/NA	Solid/Soil	6010B	15143
LCS 580-151433/19-A	Lab Control Sample	Total/NA	Solid	6010B	15143
LCSD 580-151433/20-A	Lab Control Sample Dup	Total/NA	Solid	6010B	15143
MB 580-151433/18-A	Method Blank	Total/NA	Solid	6010B	15143
General Chemistry		\mathbf{C}			
Analysis Batch: 34148					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
320-5681-A-1 DU	Duplicate	Total/NA	Solid	D 2216	
HWL0089-01	RHS-01	Total/NA	Solid/Soil	D 2216	
Analysis Batch: 152388					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
580-41946-A-1 DU	Duplicate	Total/NA	Solid	D 2216	
HWL0089-01	RHS-01	Total/NA	Solid/Soil	D 2216	
Analysis Batch: 156504					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
440-67522-A-20 DU	Duplicate	Total/NA	Solid	Moisture	

www.carrollcoxംഞെം808-782-6627

Total/NA

Solid/Soil

Moisture

1/24/2014

Client Sample ID: RHS-01

Date Collected: 12/20/13 15:00 Date Received: 12/23/13 13:10

Lab Sample ID: HWL0089-01 Matrix: Solid/Soil

Percent Solids: 95.1

		-						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Fotal/NA	Prep	3546			153305	12/30/13 11:44	HN	TAL IRV
Fotal/NA	Analysis	8270C		4	153775	01/02/14 16:39	DF	TAL IRV
Total/NA	Prep	CA LUFT			153196	12/28/13 07:03	HN	TAL IRV
otal/NA	Analysis	8015B		1	153342	12/30/13 08:36	KW	TAL IRV
otal/NA	Prep	3546			153161	12/30/13 11:45	QCT	TAL IRV
otal/NA	Analysis	8082		1	153427	12/30/13 20:23	JM	TAL IRV
otal/NA	Analysis	8081A		1	153523	12/31/13 14:53	KS	TAL IRV
「otal/NA	Prep	3546			153161	12/27/13 17:32	QCT	TAL IRV
otal/NA	Prep	8290	RA		33622	01/10/14 11:33	TGL	TAL SAC
otal/NA	Analysis	8290	RA	20	34213	01/17/14 20:40	JRB	TAL SAC
otal/NA	Prep	8290			33622	01/10/14 11:33	TGL	TAL SAC
otal/NA	Analysis	8290		20	34312	01/20/14 16:28	JRB	TAL SAC
otal/NA	Prep	7471A			151436	12/31/13 08:25	PAB	TAL SEA
otal/NA	Analysis	7471A		10	151495	12/31/13 10:04	FCW	TAL SEA
otal/NA	Prep	3050B			151433	12/30/13 12:18	PAB	TAL SEA
otal/NA	Analysis	6010B		10	151504	12/31/13 11:27	HJM	TAL SEA
otal/NA	Analysis	D 2216		1	34148	01/17/14 13:30	CV1	TAL SAC
otal/NA	Analysis	Moisture		1	156504	01/16/14 13:00	SP	TAL IRV
otal/NA	Analysis	D 2216		1	152388	01/21/14 10:47	RMB	TAL SEA

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TestAmerica Honolulu

Certification Summary

Client: Bureau Veritas Project/Site: 17012-012148.00

TestAmerica Job ID: HWL0089

Laboratory: TestAmerica Honolulu

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Florida	NELAP	4	E87907	06-30-14
Hawaii	State Program	9	N/A	06-28-14
USDA	Federal		HON-S-206	01-31-15

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-14
Arizona	State Program	9	AZ0671	10-13-14
California	LA Cty Sanitation Districts	9	10256	01-31-15
California	NELAP	9	1108CA	01-31-14
California	State Program	9	2706	06-30-14
Guam	State Program	9	Cert. No. 12.002r	01-23-14 *
Hawaii	State Program	9	N/A	01-31-14
Nevada	State Program	9	CA015312007A	07-31-14
New Mexico	State Program	6	N/A	01-31-14
Northern Mariana Islands	State Program	9	MP0002	01-31-14
Oregon	NELAP	10	4005	09-12-14
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

Laboratory: TestAmerica Sacramento

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

-	_			
Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	A2LA		NE-OS-22-13	01-31-14
A2LA	DoD ELAP		2928-01	03-31-14
Alaska (UST)	State Program	10	UST-055	02-03-14 *
Arizona	State Program	9	AZ0708	08-11-14
Arkansas DEQ	State Program	6	88-0691	06-17-14
California	NELAP	9	1119CA	01-31-14
Colorado	State Program	8	N/A	08-31-14
Connecticut	State Program	1	PH-0691	06-30-15
Florida	NELAP	4	E87570	06-30-14
Guam	State Program	9	N/A	08-31-14
Hawaii	State Program	9	N/A	01-31-14
Illinois	NELAP	5	200060	03-17-15
Kansas	NELAP	7	E-10375	10-31-14
Louisiana	NELAP	6	30612	06-30-14
Michigan	State Program	5	9947	01-31-14
Nebraska	State Program	7	NE-OS-22-13	01-31-14
Nevada	State Program	9	CA44	07-31-14
New Jersey	NELAP	2	CA005	06-30-14
New York	NELAP	2	11666	03-31-14
Northern Mariana Islands	State Program	9	MP0007	02-01-14
Oregon	NELAP	10	CA200005	03-28-14
Pennsylvania	NELAP	3	68-01272	03-31-14
South Carolina	State Program	4	87014	06-30-14
Texas	NELAP	6	T104704399-08-TX	05-31-14
US Fish & Wildlife	Federal		LE148388-0	12-31-14

* Expired certification is currently pending renewal and is considered valid.

TestAmerica Honolulu

TestAmerica Job ID: HWL0089

Laboratory: TestAmerica Sacramento (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
USDA	Federal		P330-11-00436	12-30-14
USEPA UCMR	Federal	1	CA00044	11-06-14
Utah	NELAP	8	QUAN1	01-31-14
Washington	State Program	10	C581	05-05-14
West Virginia DHHR	State Program	3	9930C	02-03-14 *
Wyoming	State Program	8	8TMS-Q	01-31-14

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-04-14
California	NELAP	9	01115CA	01-31-14
L-A-B	DoD ELAP		L2236	01-19-16
L-A-B	ISO/IEC 17025		L2236	01-19-16
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-14
USDA	Federal		P330-11-00222	05-20-14
Washington	State Program	10	C553	02-17-14

* Expired certification is currently pending renewal and is considered valid.

TestAmerica Honolulu

Client: Bureau Veritas Project/Site: 17012-012148.00

TestAmerica Job ID: HWL0089

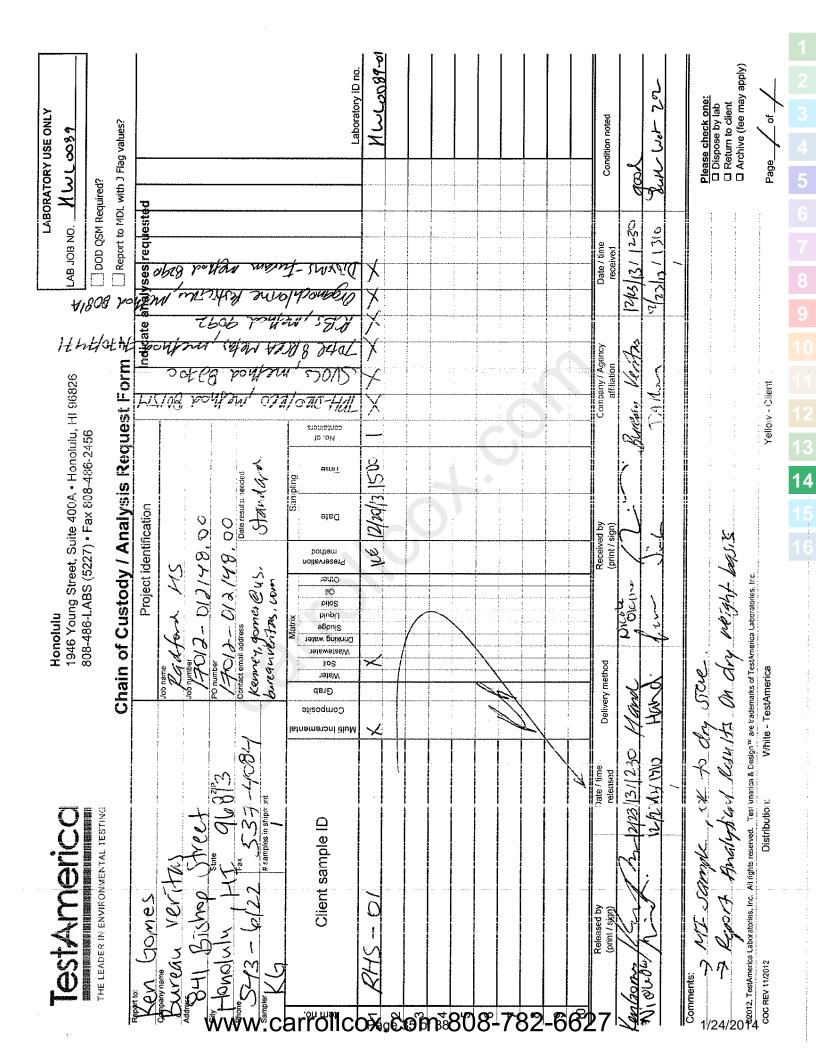
13

lethod	Method Description	Protocol	Laboratory
270C	Semivolatile Organic Compounds (GC/MS)	SW846	TAL IRV
015B	Diesel Range Organics (DRO) (GC)	SW846	TAL IRV
081A	Organochlorine Pesticides (GC)	SW846	TAL IRV
082	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL IRV
290	Dioxins and Furans (HRGC/HRMS)	SW846	TAL SAC
010B	Metals (ICP)	SW846	TAL SEA
471A	Mercury (CVAA)	SW846	TAL SEA
2216	Percent Moisture	ASTM	TAL SAC
2216	Percent Moisture	ASTM	TAL SEA
loisture	Percent Moisture	EPA	TAL IRV

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency


SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022 TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600 TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TestAmerica Honolulu

www.carrollcoജംഞെ:808-782-6627

thain of Custody present? Yes No thain of Custody Signed when relinquished and received? Yes No thain of Custody agrees with sample labels? Yes No amples in proper container/bottle? Yes No ample containers intact? Yes No ample containers on ice? Yes No ufficient sample volume for indicated test? Yes No Il samples received within holding time? Yes No /ater - VOA Vials have Zero Headspace? Yes No //ater - pH acceptable upon receipt? Yes No No pH Adjusted? Yes No Vodation: Final pH: ncores / MI-VOC / 5035 Vials Present? Yes No Ves No ample Filtration Needed? Yes No Ves No Filtered in Field: ry Weight Corrected Results? Yes No Ves No Take Action:	s	Sample Recei	pt Checklist	:	
Matrices: Gill Carrier: Click Airbill# : Shipping container/cooler in good condition? Yes V No Not Present Image: Solid Stress of the stre	lient Name: Burgan Vertas	Date/ T	ime Received:	121	23/13 1310
hipping container/cooler in good condition? thain of Custody present? thain of Custody Signed when relinquished and received? thain of Custody agrees with sample labels? amples in proper container/bottle? ample containers intact? ample containers on ice? ufficient sample volume for indicated test? Il samples received within holding time? /ater - VOA Vials have Zero Headspace? /ater - pH acceptable upon receipt? pH Adjusted? Yes No VOA vials present? ample Filtration Needed? ry Weight Corrected Results? ODQSM / QAPP Project? Yes No VOA vials Present? Temperature Blank Present? Yes No VoA vials Sample Container Temperature: 2 °C			Received By:	n	
hain of Custody present? hain of Custody Signed when relinquished and received? Hain of Custody agrees with sample labels? amples in proper container/bottle? ample containers intact? ample containers on ice? Ufficient sample volume for indicated test? I samples received within holding time? Yes 7 No I samples received within holding time? Yes 7 No Ves 7 No No VOA vials present? Yes 7 No No VOA vials present? Yes 7 No Ves 7 No No VOA vials present? Yes 7 No No VOA vials present? Yes 7 No Ves 7 No No VOA vials present? Yes 7 No Tinal pH: Location: ample Filtration Needed? ry Weight Corrected Results? ODQSM / QAPP Project? Temperature Blank Present? Yes No 7 Sample Container Temperature: 2 °C	Matrices: Sail	Carrier: Clist		Airbill# :	
hain of Custody present? No Files 7 No Files	ipping container/cooler in good condition?		Yes 🖊	No 💷	Not Present
Chain of Custody agrees with sample labels? Yes No Samples in proper container/bottle? Yes No Sample containers intact? Yes No Sample containers on ice? Yes No Sample seccived within holding time? Yes No Vater - VOA Vials have Zero Headspace? Yes No Vater - pH acceptable upon receipt? Yes No Vater - pH acceptable upon receipt? Yes No PH Adjusted? Yes No Vot Checked: pH Adjusted? Yes No Final pH: Incores / MI-VOC / 5035 Vials Present? Yes No sample Filtration Needed? Yes No ry Weight Corrected Results? Yes No voDQSM / QAPP Project? Yes No Temperature Blank Present? Yes No Sample Container Temperature: 2 °C	ain of Custody present?	-	Yes 🖊	No 👘	
chain of Custody agrees with sample labels? Yes No iamples in proper container/bottle? Yes No iample containers intact? Yes No iample containers on ice? Yes No iufficient sample volume for indicated test? Yes No Il samples received within holding time? Yes No Vater - VOA Vials have Zero Headspace? Yes No Vater - pH acceptable upon receipt? Yes No PH Adjusted? Yes No Vot Checked: ample Filtration Needed? Yes No ry Weight Corrected Results? Yes No ODQSM / QAPP Project? Yes No Temperature Blank Present? Yes No Temperature Blank Present? Yes No		d received?	Yes 🖊	No T	
amples in proper container/bottle? ample containers intact? ample containers on ice? ufficient sample volume for indicated test? Il samples received within holding time? /ater - VOA Vials have Zero Headspace? /ater - pH acceptable upon receipt? /ater - pH acceptable upon receipt? /bH Adjusted? Yes No VOA vials present? ample Filtration Needed? ry Weight Corrected Results? ODQSM / QAPP Project? Temperature Blank Present? Yes No Voa vials present? Temperature Blank Present? Yes No Voa vials present? Yes No Voa vials				No 🥍 (
ample containers intact? Yes 7 No 7 ample containers on ice? Yes 7 No 7 ufficient sample volume for indicated test? Yes 7 No 7 Il samples received within holding time? Yes 7 No 7 /ater - VOA Vials have Zero Headspace? Yes 7 No 7 /ater - pH acceptable upon receipt? Yes 7 /ater - pH accepta	• •				
ample containers on ice? Yes Yes No Type: Uet Ufficient sample volume for indicated test? I samples received within holding time? Yes Yes No Vater - VOA Vials have Zero Headspace? Yes No No No No VOA vials present? Yes No No No VOA vials present? Yes No No No No VOA vials present? Yes No No No VOA vials present? Yes No No No No VOA vials present? Yes No No No No Votation: Temperature Blank Present? Yes No No Yes Yes No Yes No Yes Yes No Yes No Yes No Yes Yes Yes N					
ufficient sample volume for indicated test? Yes No I samples received within holding time? Yes No 'ater - VOA Vials have Zero Headspace? Yes No 'ater - pH acceptable upon receipt? Yes No No 'pH Adjusted? Yes No No Vot Checked: Image: Second S			Yes 7	No T	Type: Let
I samples received within holding time? ater - VOA Vials have Zero Headspace? ater - pH acceptable upon receipt? PH Adjusted? Yes No VOA vials present pH Adjusted? Yes No V Final pH: hcores / MI-VOC / 5035 Vials Present? ample Filtration Needed? Yes No V Filtered in Field: ry Weight Corrected Results? DDQSM / QAPP Project? Temperature Blank Present? Yes No V Sample Container Temperature: 2 °C	•				
Vater - VOA Vials have Zero Headspace? Yes No No No VOA vials present Vater - pH acceptable upon receipt? Yes No No Not Checked: No pH Adjusted? Yes No Ves No Final pH: Location: Location:	-			No	
/ater - pH acceptable upon receipt? Yes No No Not Checked: Image: constraint of the co					No VOA vials present:
pH Adjusted? Yes No V Final pH: hcores / MI-VOC / 5035 Vials Present? Yes No V Location: ample Filtration Needed? Yes No V Filtered in Field: ry Weight Corrected Results? Yes No V Take Action: DDQSM / QAPP Project? Yes No V Type: Temperature Blank Present? Yes No V Type: Sample Container Temperature: <u>2 °C</u>			Arrest	No	Not Checked:
Acores / MI-VOC / 5035 Vials Present? Ample Filtration Needed? Ty Weight Corrected Results? DDQSM / QAPP Project? Temperature Blank Present? Yes No 7 Sample Container Temperature: <u>7 °C</u>		pH Adjusted	? Yes	_	Final pH:
ample Filtration Needed? Yes No Filtered in Field: ry Weight Corrected Results? Yes No Take Action: ODQSM / QAPP Project? Yes No Type: Temperature Blank Present? Yes No Sample Container Temperature: 2 °C	cores / MI-VOC / 5035 Vials Present?		- 80,4615		•
ry Weight Corrected Results? ODQSM / QAPP Project? Temperature Blank Present? Yes No 7 Sample Container Temperature: 7 °C					
ODQSM / QAPP Project? Yes No Type: Temperature Blank Present? Yes No Yes Sample Container Temperature: 2 °C			5 genome -		
Temperature Blank Present? Yes No V Sample Container Temperature: <u>7 °C</u>					
Sample Container Temperature: <u>2 °C</u>					
Sample Container Temperature: <u>2 °C</u>	Temperatu	ure Blank Present	? Yes	No 7	
			-		
Comments/ Sampling Handling Notes:		•			
Comments/ Sampling Handling Notes:					
	Comments/ Sampling Handling No	tes:			
					n nyen mana ta bin dan si 19 milan da mangangan ya za anana anan anan kara anan daga anan wana da da da da da d

Client: Bureau Veritas Project/Site: 17012-012148.00

Client Sample ID: RHS-01

Lab Sample ID: HWL0089-01

-						WHO 2005	5		
						ND = 0			
Analyte	Result	Qualifier	NONE	NONE		TEF	TEQ	Method	_
Total Dioxin/Furan TEQ					pg/g		2000	TEQ	
-						WHO 2005	5		
						ND = 0			
Analyte	Result	Qualifier	RL	EDL	Unit	TEF	TEQ	Method	
2,3,7,8-TCDD	88		21	11	pg/g	1	88	8290	_
1,2,3,7,8-PeCDD	340		100	52	pg/g	1	340	8290	
1,2,3,7,8-PeCDF	1100		100	49	pg/g	0.03	33	8290	
2,3,4,7,8-PeCDF	2300		100	52	pg/g	0.3	690	8290	
1,2,3,4,7,8-HxCDD	250		100	11	pg/g	0.1	25	8290	
1,2,3,6,7,8-HxCDD	420		100	8.5	pg/g	0.1	42	8290	
1,2,3,7,8,9-HxCDD	320		100	8.2	pg/g	0.1	32	8290	
1,2,3,4,7,8-HxCDF	1900	В	100	85	pg/g	0.1	190	8290	
1,2,3,6,7,8-HxCDF	1400	В	100	71	pg/g	0.1	140	8290	
2,3,4,6,7,8-HxCDF	1900	В	100	79	pg/g	0.1	190	8290	
1,2,3,7,8,9-HxCDF	ND		100	89	pg/g	0.1	0.00	8290	
1,2,3,4,6,7,8-HpCDD	2400	в	100	16	pg/g	0.01	24	8290	
1,2,3,4,6,7,8-HpCDF	7600	В	100	98	pg/g	0.01	76	8290	
1,2,3,4,7,8,9-HpCDF	220	G	120	120	pg/g	0.01	2.2	8290	
OCDD	5600	В	210	19	pg/g	0.0003	1.7	8290	
OCDF	1700	В	210	5.7	pg/g	0.0003	0.51	8290	_
2,3,7,8-TCDF - RA	1400		21	3.2	pg/g	0.1	140	8290	

TEF Reference:

WHO 2005 = World Health Organization (WHO) 2005 TEF, Dioxins, Furans and PCB Congeners

TestAmerica Honolulu

TCDF

(40-135)

41

56

TCDD

(40-135)

51

65

OCDD (40-135)

58

73

Method: 8290 - Dioxins and Furans (HRGC/HRMS)

Client Sample ID

Client Sample ID

Method Blank

Lab Control Sample

Method Blank

Lab Control Sample

Matrix: Solid

Lab Sample ID LCS 320-33622/2-A

Lab Sample ID

LCS 320-33622/2-A

MB 320-33622/1-A

Surrogate Legend TCDD = 13C-2,3,7,8-TCDD TCDF = 13C-2,3,7,8-TCDF PeCDD = 13C-1,2,3,7,8-PeCDD PeCDF1 = 13C-1,2,3,7,8-PeCDF HxCDD2 = 13C-1,2,3,6,7,8-HxCDD HxCDF1 = 13C-1,2,3,4,7,8-HxCDF HpCDD = 13C-1,2,3,4,6,7,8-HpCDD HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

MB 320-33622/1-A

				TestAmeri	ca Joh ID.	H/WI 0089	
				resu anen		TIVECCCC	
					Prep Type	: Total/NA	
Pe	ercent Isotop	be Dilution Re	ecovery (Acc	eptance Limi	ts)		
	PeCDD	PeCDF1	HxCDD2	HxCDF1	HpCDD	HpCDF1	
)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	
_	52	48	52	45	62	56	
	66	62	67	55	78	69	
Pe	ercent Isotop	be Dilution Re	ecovery (Acco	eptance Limi	ts)		

Method: 8290 - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid/Soil

OCDD = 13C-OCDD

								- F 7F -	
Percent Isotope Dilution Recovery (Acceptance L					eptance Limi	ts)			
Lab Sample ID	Client Sample ID	TCDD (40-135)	TCDF (40-135)	PeCDD (40-135)	PeCDF1 (40-135)	HxCDD2 (40-135)	HxCDF1 (40-135)	HpCDD (40-135)	HpCDF1 (40-135)
HWL0089-01 - RA	RHS-01		69				<u> </u>		
HWL0089-01	RHS-01	73	78	80	80	62	58	49	54
			Р	ercent Isotop	e Dilution Re	ecovery (Acc	eptance Limi	ts)	
		OCDD							
Lab Sample ID	Client Sample ID	(40-135)							
HWL0089-01 - RA	RHS-01								
HWL0089-01	RHS-01	50							
Surrogate Legend									
TCDD = 13C-2,3,7,8-T	CDD								
TCDF = 13C-2,3,7,8-T	CDF								
PeCDD = 13C-1,2,3,7,	8-PeCDD								
PeCDF1 = 13C-1,2,3,7	7,8-PeCDF								
HxCDD2 = 13C-1,2,3,6	6,7,8-HxCDD								
HxCDF1 = 13C-1,2,3,4	1,7,8-HxCDF								
HpCDD = 13C-1,2,3,4	,6,7,8-HpCDD								
HpCDF1 = 13C-1,2,3,4	4,6,7,8-HpCDF								

OCDD = 13C-OCDD

TestAmerica Honolulu

www.carrollcox.com:808-782-6627

16

Prep Type: Total/NA

APPENDIX B

LABORATORY ANALYTICAL REPORTS AND CHAIN OF CUSTODY FORMS (NVL)

December 27, 2013

Laboratory | Management | Training

Kenney Gomes Bureau Veritas North America, Inc.-Hawaii 841 Bishop Street, Suite 1100 Honolulu, HI 96813

RE: Bulk Asbestos Fiber Analysis, NVL Batch # 1321182.00

Dear Mr. Gomes,

Enclosed please find test results for the bulk samples submitted to our laboratory for analysis. Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both U.S. EPA 600/M4-82-020, Interim Method for Determination of Asbestos in Bulk Insulation Samples, as found in 40 CFR, Part 763, Subpart E, Appendix E (formerly Subpart F, Appendix A), and U.S. EPA 600/R-93/116 (July 1993) Test Methods.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos. If you would like us to further refine the concentration estimates of asbestos in these samples using point counting, please let me know.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Nick Ly, Technical Director

NVL Laboratories, Inc. 4708 Aurora Ave N, Seattle, WA 98103

1.888.(685.5227) www.nvllabs.com

1.888.NVL.LABS

Enc.: Sample Results

Lab Code: 102063-0

www.carrollcox.com 808-782-66276.547.0100 | f 206.634.1936

NVL	Labora	atories,	Inc

4708 Aurora Ave. N., Seattle, WA 98103 Tel: 206.547.0100, Fax: 206.634.1936 www.nvllabs.com For the scope of accreditation under NVLAP Lab Code 102063-0

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Bureau Veritas North America, Inc.-Hawaii Address: 841 Bishop Street, Suite 1100 Honolulu, HI 96813

Attention: Mr. Kenney Gomes

Project Location: Radford HS

Batch #: 1321182.00 Client Project #: 1702-012148.00 Date Received: 12/26/2013 Samples Received: 6 Samples Analyzed: 6 Method: EPA/600/R-93/116 & EPA/600/M4-82-020

NVLAD

Lab ID: 13147 Location: Radf			
Layer 1 of 1	Description: Off-white fibrous material		
	Non-Fibrous Materials:	Other Fibrous Materials:%	Asbestos Type: %
	Binder/Filler, Fine particles	Cellulose 33%	Chrysotile 55%
Lab ID: 13147	7581 Client Sample #: RHS-2		
Location: Radfe	ord HS		
Layer 1 of 1	Description: Off-white fibrous material		
	Non-Fibrous Materials:	Other Fibrous Materials:%	Asbestos Type: %
	Binder/Filler, Fine particles	Cellulose 37%	Chrysotile 51%
Lab ID: 13147 Location: Radfo			
Layer 1 of 1	Description: Off-white fibrous material		
	Non-Fibrous Materials:	Other Fibrous Materials:%	Asbestos Type: %
	Binder/Filler, Fine particles	Cellulose 35%	Chrysotile 53%
Lab ID: 13147 Location: Radfo			
Layer 1 of 3	Description: Off-white/brown fibrous materia	al with debris	
	Non-Fibrous Materials:	Other Fibrous Materials:%	Asbestos Type: %
	Binder/Filler, Glass debris	Glass fibers 68%	None Detected ND
		Cellulose 13%	
Layer 2 of 3	Description: Off-white brittle material with w	oven fibrous material and silver paper	
		Others Etherson Marta data (20)	Asbestos Type: %
	Non-Fibrous Materials:	Other Fibrous Materials:%	Manearoa Laher 10

Sampled by: Client		Le our
Analyzed by: Jacob Laugeson	Date: 12/27/2013	V Cang Kay
Reviewed by: Nick Ly	Date: 12/27/2013	🔪 Nick Ly, Technical Director
lote: If samples are not homogeneous, then subsample	es of the components were analyzed s	separately. All bulk samples are analyzed using both EPA

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to plain the approval of NVL Personnel.

	S Fibers Analysi Light Microscopy Other Fibrous Materials Mineral fibers	Batch #: 1321182.0 Client Project #: 1702-012148.0 Date Received: 12/26/20 Samples Received: Samples Analyzed: Method: EPA/600/R-93/11 & EPA/600/M4-82-02
By Polarized L ritas North America, IncHawaii o Street, Suite 1100 HI 96813 y Gomes S m: White brittle material Non-Fibrous Materials: alcareous binder, Mineral grains	Light Microscopy Other Fibrous Materials Mineral fibers	Batch #: 1321182.0 Client Project #: 1702-012148.0 Date Received: 12/26/207 Samples Received: Samples Received: Samples Received: Samples Analyzed: Method: EPA/600/R-93/11 & EPA/600/M4-82-02 :% Asbestos Type: % 3%
ritas North America, IncHawaii o Street, Suite 1100 HI 96813 y Gomes S n: White brittle material Non-Fibrous Materials: alcareous binder, Mineral grains	Other Fibrous Materials Mineral fibers	Client Project #: 1702-012148.0 Date Received: 12/26/20 Samples Received: Samples Analyzed: Method: EPA/600/R-93/11 & EPA/600/M4-82-02 :% Asbestos Type: % 3% None Detected Ni
o Street, Suite 1100 HI 96813 y Gomes on: White brittle material Non-Fibrous Materials: alcareous binder, Mineral grains	Mineral fibers	Client Project #: 1702-012148.0 Date Received: 12/26/20 Samples Received: Samples Analyzed: Method: EPA/600/R-93/11 & EPA/600/M4-82-02 :% Asbestos Type: % 3% None Detected Ni
HI 96813 y Gomes S n: White brittle material Non-Fibrous Materials: alcareous binder, Mineral grains	Mineral fibers	Date Received: 12/26/20 Samples Received: Samples Analyzed: Method: EPA/600/R-93/11 & EPA/600/M4-82-02 :% Asbestos Type: % 3% None Detected Ni
S n: White brittle material Non-Fibrous Materials: alcareous binder, Mineral grains	Mineral fibers	Samples Analyzed: Method: EPA/600/R-93/11 & EPA/600/M4-82-02 :% Asbestos Type: % 3% None Detected Ni
S n: White brittle material Non-Fibrous Materials: alcareous binder, Mineral grains	Mineral fibers	Method: EPA/600/R-93/11 & EPA/600/M4-82-02 :% Asbestos Type: % 3% None Detected Ni
n: White brittle material Non-Fibrous Materials: alcareous binder, Mineral grains	Mineral fibers	& EPA/600/M4-82-02 :% Asbestos Type: % 3% None Detected Ni
Non-Fibrous Materials: alcareous binder, Mineral grains	Mineral fibers	None Detected N
alcareous binder, Mineral grains	Mineral fibers	None Detected N
Client Sample #: RHS-5	Cellulose 3	3%
Client Sample #: RHS-5		
n: Orange fibrous material with debris		
Non-Fibrous Materials:	Other Fibrous Materials	:% Asbestos Type: %
ller, Fine particles, Glass debris	Glass fibers 52	2% None Detected N
	Cellulose 33	3%
Client Sample #: RHS-6		
n: Brown fibrous material with debris		
Non-Fibrous Materials:	Other Fibrous Materials:	:% Asbestos Type: %
lcareous particles, Glass debris	Glass fibers 61	% None Detected NI
	Cellulose 19)%
	Non-Fibrous Materials: iller, Fine particles, Glass debris Client Sample #: RHS-6 m: Brown fibrous material with debris	Non-Fibrous Materials: Other Fibrous Materials iller, Fine particles, Glass debris Glass fibers 52 Cellulose 33 Client Sample #: RHS-6 Cellulose 33 m: Brown fibrous material with debris Non-Fibrous Materials: Other Fibrous Materials Non-Fibrous Materials: Other Fibrous Materials Other Fibrous Materials Icareous particles, Glass debris Glass fibers 61

Sampled by: Client		1 ROK	
Analyzed by: Jacob Laugeson	Date: 12/27/2013	5 throw the	
Reviewed by: Nick Ly	Date: 12/27/2013	Nick Ly, Technical Director	
. If complex are not home concerns they automate of t			

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to rearry and a compared to the second state of the second state o

4708 Aurora / I: 206.547.0100 x: 206.634.1936	Emerg.Pag 1.888.NVL	ger: 206.344 LABS (685.	.1878 5227)	S	IN of CUS		1.52	2118
Client B	ureau Veri	tas North A	merica, Ir	nc.	NVL B	atch Number		
Street 8	41 Bishop	Street, Suite	∋ 1100		Client	Job Number	7012-92148	1,00
He	pholulu, HI 9681	3			— то	otal Samples	6	
roject Manager	Ken G	omes			Turn /			4 Days
roject Location	Rath	-2 HS						5 Days 6 to 10 Days
	<u>/~~~</u>						Please call for TAT less th	
Dhamas /9	00) 524 6	709 Faw	: (808) 5	27 4094	Er Cell	nail address	ly, gomes (PUS burg	an veritas
Asbestos Air	08) 531-67	IOSH 7400)					EPA Level II)	
							vimetry) TEM Bulk	
METALS	Det. Limit	Matrix				RCRA Metals		ther Metals
Total Metals	ppm (A/		ilter		t Chips	Arsenic (As)	Lead (Pb)	All 3
	🗌 ppb (GF		king water		t Chips (Area) te Water	Barium (Ba)		Copper (Cu) Nickel (Ni)
			wipe		ie water	Chromium (Cd)		Zinc (Zn)
Other Types	🗌 Fibergla	ss 📋 Nuisa	nce Dust	Othe	er (Specify)			
of Analysis	Silica		rable Dust				÷	
Condition of Packa	ige: 🗌 Goo	d 🗌 Damag	ed (no spi	llage) 🗌] Severe dama	ge (spillage)		
Seq. # Lab ID	C	lient Sample	Number					A/R
1 .		2 <u>HS-1</u>		See the	attached dat	a sheet(s)		
2	iA	NS-2						
3	P	MJ-3						
4	P	115-4			<u>c</u>			
5	16	MS-5						
6	P	MS-60						
7		•			<u> </u>			
8					/			
9				/	·····			
10			11					
11			M/					
12			/					
13								
14	- C							
15		V	<u>_</u>			×		
	Print Belo	w	Sign Be	lew	2	Company	Date	Time
Sampled b	v Fen Gov	nej	K	~/0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	BVNA - Hawa	/*/·/·/	
Relinquished b			14		the second	BVNA - Hawa	111 /2/23/13	1230
Received b		m Kull	Y	<u>j</u>	\sim	+ M	12/20	2101550
Analyzed b	1	Langeson		1	py	M	122713	135
		<u>×</u>			v 17			
Results Called by Results Faxed by						1		1

Ñ 	1321182			- A	
6	NVL Batch	Z			Notes:
Friable	🛛 Misc.				
Non-	I TSI		L		
Friable	Surfacing		1		
Friable	A Misc.				
N			L		
Friable	Surfacing				
Friable	Misc.				
		(
□ Friable ►	🗆 Surfacino				
Friable	Misc.	2			
ar					
Friable	Surfacing				
Friable	Misc.				
Non-			+		
	Surfacing				
	Misc.				
II Non-					
□ FriableΩ	Surfacing		0		
Friable 8	D Misc.				
-non 90					
Friable-			¢	0	
Friable 78	I Misc.				
Non-					
Friable	Surfacing				
Friable	Misc.			Fand A	, (14al
۵ ۱۰ ۱۰	Q TSI	is burich	aubrs	GEAN)	111-6
Friable	Surfacing	Unknown awardstor that	Mik / orange tiberus	ITALY Expans Easy	141-5
Friable	Misc.			1	C (MA)
Non-	R TSI	sand hereiner		/ / / North	011 / 2 M
X Friable	Surfacing	Untrown quanta hat	which there de bis	Track Frenchmy East	(MM) - 1
Friability	Category	Quantity/Material Location	Material Description	Sample Location	Number
23/13	Date: /2/		Bidg. Name / No.	Haward MS	Project Name:
of	Page: /	AR JM PA SC TKS DG	Inspectors' Name:	140-01148.00	Project No.
	*	(Mr.)	BUREAU VERITAS – Suspect Asbestos-Containing Materials (ACM) Sampling Sheet	NS – Suspect Asbestos-Containin	BUREAU VERITA

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN OF CUSTODY FORMS (ESN)

Environmental Services Network

February 8, 2014

Ken Gomes Bureau Veritas North America, Inc 970 N. Kalaheo, Ste C-316 Kailua, HI 96734

SUBJECT: DATA REPORT - 17012.012148.48, Radford High School

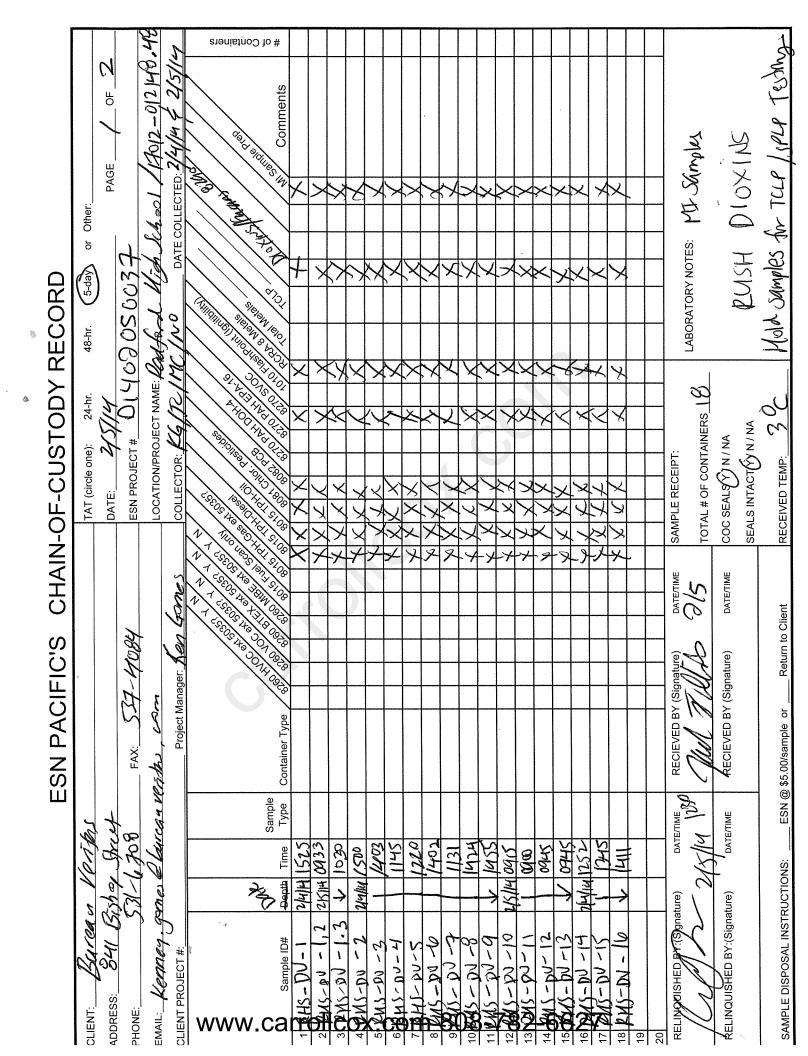
ESN Project # D1402050037

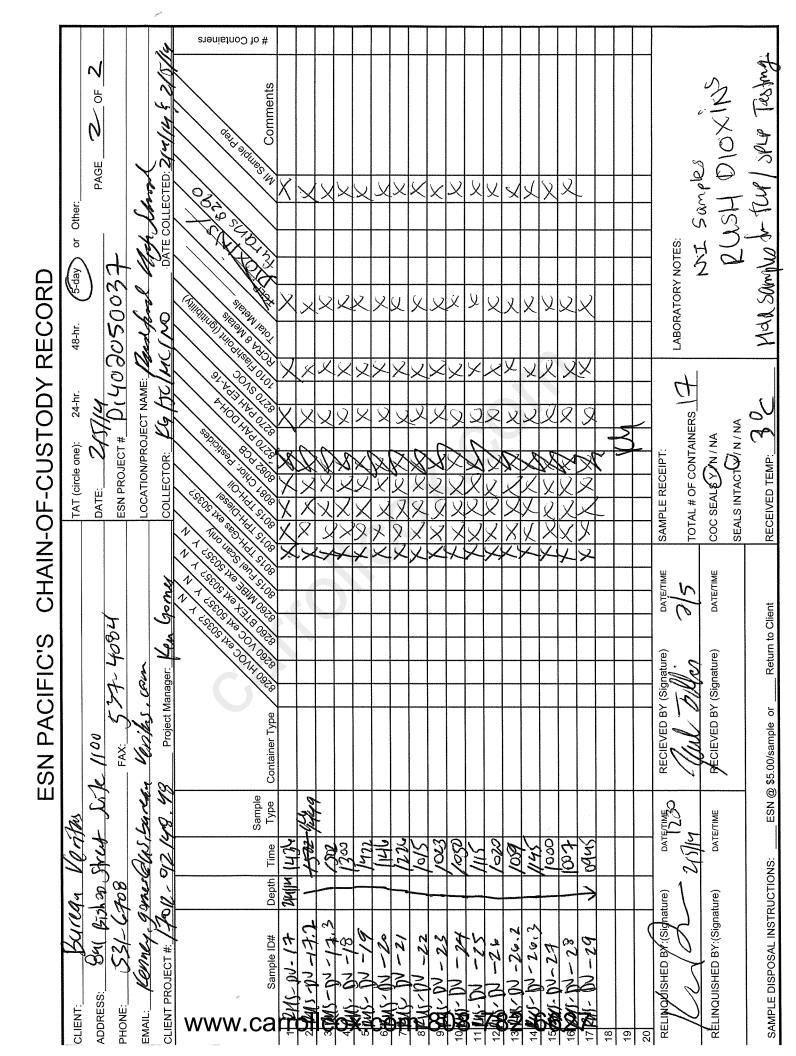
Mr. Gomes:

Please find enclosed a data report for the samples analyzed from the above referenced project for Bureau Veritas North America, Inc. The samples were received intact. Applicable detection limits, QA/QC data, and any issues encountered during analysis are included in the report.

The following tests were conducted:

- Multi-increment sample processing by Hawaii DOH Method.
- Analyses for TPH as diesel by EPA 8015 mod.
- Analyses for TPH as oil by EPA 8015 mod.
- Analyses for organochlorine pesticides by EPA 8081 mod.
- Analyses for polychlorinated biphenyls by EPA 8082 mod.
- Analyses for semi-volatile organic compounds by EPA method 8270.
- Analyses for total RCRA 8 by EPA 6020.
- Analyses for dioxins & furans by EPA 8290.


ESN appreciates the opportunity to have provided analytical services to Bureau Veritas North America, Inc on this project. If you have any further questions relating to the data or report, please do not hesitate to contact us.


Sincerely,

Karen Carvallo Operations Manager

ESN Pacific 2020-B Kahai Street Honolulu, HI 96819

Ph: (808) 847-0067 esn@esnpacific.com

Environmental Services Network

NON-VOLATILE MULTI-INCREMENT PREPARATION

DATE: 2/6 and 2/7/2014

PREPARED BY: A. Crowell, N. Kippen, Z. Tullis

ESN PROJECT: D1402050037

Bureau Veritas North America, Inc., personnel collected multi-increment samples in the field for analysis. The samples were delivered to ESN's lab for preparation and analyses, according to DOH's Multi-Increment Sampling Plan (HEER TGM, Section 4.2).

(Dry weights)	
Sample ID#	Sample Weight (g)
RHS-DU-1	1655.9
RHS-DU-1.2	2490.1
RHS-DU-1.3	2749.6
RHS-DU-2	2403.1
RHS-DU-3	1348.7
RHS-DU-4	1361.4
RHS-DU-5	2393.6
RHS-DU-6	1982.6
RHS-DU-7	2190.7
RHS-DU-8	1738.5
RHS-DU-9	1346.9
RHS-DU-10	1895.3
RHS-DU-11	1361.0
RHS-DU-12	2363.9
RHS-DU-13	2176.6
RHS-DU-14	1584.5
RHS-DU-15	1880.3
RHS-DU-16	2119.8
RHS-DU-17	1802.0
RHS-DU-17.2	1897.2
RHS-DU-17.3	2067.8
RHS-DU-18	1770.5
RHS-DU-19	1451.4
RHS-DU-20	1934.5
RHS-DU-21	1588.3
RHS-DU-22	1857.2

RHS-DU-23	2096.1
RHS-DU-24	1690.8
RHS-DU-25	1412.7
RHS-DU-26	1806.5
RHS-DU-26.2	2268.0
RHS-DU-26.3	2205.2
RHS-DU-27	2204.1
RHS-DU-28	974.8
RHS-DU-29	1061.8

SAMPLE PREP PROCESS SUMMARY:

- Each sample was emptied from their containers on to its own clean, flat baking pan. The sample was spread out evenly across the pan no more than 1" high in thickness.
- Sample trays were placed on separate oven racks and air-dried overnight or until no significant moisture remained as determined by appearance.
- Sample trays were removed and weighed to determine sample's total dry weight (see above table).
- Sieved entire dried sample through a #10 mesh sieve rendering particles less than two-millimeters in size. Clumps of dirt were crushed until able to pass through the sieve, rocks and other debris were set aside.
- Sieved samples were spread out evenly on flat baking pans.
- A small flat spatula was used to randomly scoop up 30 to 50 small increments to fill sample containers. Care was taken during this step to ensure that samples contained a good distribution of particle sizes. If duplicate or triplicate analysis is requested, additional samples are collected at this time. Remaining sample was returned to resealable (i.e. Zip-Loc) bags.

Pacific Inc.

8. 1 p

ر الا

Environmental Services Network

Bureau Veritas North America, Inc. PROJECT #17012.012148.48 Radford High School

37	
0030	
14020500	
÷0#	
Project	
ESN	

PCB ANALYSES OF SOILS BY EPA 8082 MODIFIED	BY EPA 8082 M	ODIFIED										
SAMPLE	DATE	DATE	DATE	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	SURROGATE	FLAGS
NUMBER	SAMPLED	EXTRACTED	ANALYZED	(mg/kg)	RECOVERY(%)							
Method Blank		2/6/2014	2/7/2014	pu	91%							
RHS-DU-1	2/4/2014	2/6/2014	2/10/2014	pu	67%							
RHS-DU-1 Dup	2/4/2014	2/6/2014	2/10/2014	pu	78%							
RHS-DU-1.2	2/5/2014	2/6/2014	2/10/2014	pu	pu	pu	pu	pu	pu .	pu	68%	
RHS-DU-1.3	2/5/2014	2/6/2014	2/10/2014	pu	71%							
RHS-DU-2	2/4/2014	2/6/2014	2/10/2014	рц	pu	pu	pu	pu	pu	0.10	84%	
RHS-DU-3	2/4/2014	2/6/2014	2/12/2014	pu	pu	pu	pu	pu	pu	0.21	88%	
BHS-DU-4	2/4/2014	2/6/2014	2/10/2014	pu	87%							
BHS-DI1-5	2/4/2014	2/6/2014	2/10/2014	pu	рц	pu	pu	pu	pu	0.05	74%	
BHS-D1-6	2/4/2014	2/6/2014	2/10/2014	pu	72%							
BHS-DU-7	2/4/2014	2/6/2014	2/7/2014	pu	pu	pu	pu	pu	pu	0.09	88%	
BHS-DIL-8	2/4/2014	2/6/2014	2/7/2014	pu	pu	pu	pu	pu	pu	0.17	82%	
6-11C-SHB	2/4/2014	2/7/2014	2/12/2014	pu	pu	pu	pu	pu	pu	0.32	83%	
BHS-D(1-10	2/5/2014	2/6/2014	2/12/2014	P	pu	pu	pu	P	pu	0.66	84%	
RHS-DU-11	2/5/2014	2/6/2014	2/14/2014	pu	pu	pu	pu	pu	pu	3.27	00	DF 2
BHS-DU-12	2/5/2014	2/6/2014	2/14/2014	рu	pu	pu	pu	pu	pu	2.17	8	DF 2
RHS-DU-13	2/5/2014	2/6/2014	2/10/2014	pu	pu	pu	pu	pu	pu	1.00	83%	
RHS-DU-14	2/4/2014	2/6/2014	2/10/2014	pu	pu	pu	pu	pu	р	0.13	80%	
BHS-DI-15	2/4/2014	2/6/2014	2/10/2014	pu	pu	pu	pu	pu	р	0.23	80%	
RHS-DU-16	2/4/2014	2/6/2014	2/10/2014	pu	×08 .							
				0,0	00.0	00.0	0.06	0.05	0.05	0.05		
POL				0.10	0.2U	0.20	60.0	60.0	co.0			
MDL				0.05	0.15	0.10	0.04	0.02	0.04	0.04		
2005 HI DOH EAL				1.10	1.10	1.10	1.10	1.10	1.10	1.10		5.000 U.V.
	TIMITE EOD CITD		VI. 65% . 125%									

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (TCMX): 65% - 135%

DF: Reported result calculated from dilution factor, multiply detection limit by dilution factor. DO: Diluted out.

QA/QC DATA - LABORATORY CONTROL SPIKE ANALYSES

1.00 1.05 104.9% 1.00 0.86 86.3% 1.00 0.85 85.0% **QA/QC DATA - MATRIX SPIKE ANALYSES** Sample Name: RHS-DU-1 Spike Added Measured Conc. % Recovery Spike Added Measured Conc. % Recovery

1.00 0.98 98.4%

1.00 0.93 92.6% 1.00 0.94 94.4%

2.0%

RPD

Spike Added Measured Conc. % Recovery

1.5%

<u>% Recovery LIMITS: 80% TO 120%</u> RPD LIMIT: 20%

Pacific Inc.

Environmental Services Network

Bureau Veritas North America, Inc. PROJECT #17012.012148.48 Radford High School

ESN Project #D1402050037

PCB ANALYSES OF SOILS BY EPA 8082 MODIFIED	BY EPA 8082 M	ODIFIED										
SAMPLE	DATE	DATE	DATE	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	SURROGATE	FLAGS
NUMBER	SAMPLED	EXTRACTED	ANALYZED	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	RECOVERY(%)	
Method Blank		2/6/2014	2/10/2014	pu	pu	pu	pu	pu	pu	pu	71%	
RHS-DU-17	2/4/2014	2/7/2014	2/14/2014	pu	pu	pu	pu	pu	pu	2.23	8	DF 2
RHS-DU-17 Dup	2/4/2014	2/7/2014	2/14/2014	pu	pu	pu	pu	pu	pu	2.26	8	DF 2
RHS-DU-17.2	2/4/2014	2/6/2014	2/14/2014	pu	pu	pu	pu	pu	pu .	2.35	8	DF 2
RHS-DU-17.3	2/4/2014	2/7/2014	2/14/2014	pu	pu	pu	pu	pu	pu	2.24	8	DF 2
RHS-DU-18	2/4/2014	2/7/2014	2/12/2014	pu	pu	pu	pu	pu	pu	1.19	77%	
RHS-DU-19	2/4/2014	2/7/2014	2/12/2014	pu	pu	pu	pu	pu	pu	0.47	83%	
RHS-DU-20	2/4/2014	2/6/2014	2/10/2014	pu	pu	pu	pu	pu	pu	0.29	86%	
RHS-DU-21	2/4/2014	2/6/2014	2/10/2014	pu	pu	pu	pu	pu	pu	0.20	78%	
RHS-DU-21 Dup	2/4/2014	2/6/2014	2/10/2014	pu	pu	pu	pu	pu	pu	0.24	75%	
RHS-DU-22	2/4/2014	2/7/2014	2/12/2014	pu	pu	pu	pu	pu	pu	0.25	78%	
RHS-DU-23	2/4/2014	2/7/2014	2/12/2014	pu	pu	pu	pu	pu	pu	1.46	86%	
RHS-DU-24	2/4/2014	2/6/2014	2/10/2014	pu	pu	pu	pu	pu	pu	pu	87%	
RHS-DU-25	2/4/2014	2/6/2014	2/10/2014	pu	pu	pu	pu	pu	pu	pu	82%	
RHS-DU-26	2/4/2014	2/7/2014	2/12/2014	pu	pu	pu	pu	pu	pu	pu	%69	
RHS-DU-26.2	2/4/2014	2/7/2014	2/12/2014	pu	pu	pu	pu	pu	pu	pu	68%	
RHS-DU-26.3	2/4/2014	2/7/2014	2/12/2014	pu	pu	pu	pu	pu	pu	pu	85%	
RHS-DU-27	2/4/2014	2/7/2014	2/12/2014	pu	pu	pu	pu	P	pu	pu	95%	
RHS-DU-28	2/4/2014	2/7/2014	2/10/2014	pu	pu	pu	pu	pu	pu	P	87%	
RHS-DU-29	2/4/2014	2/7/2014	2/12/2014	pu	pu	pu	pu	pu	pu	P	70%	
RHS-DU-29 Dup	2/4/2014	2/7/2014	2/12/2014	pu	pu	pu	pu	pu	pu	pu	83%	
							100	202	0.05	0.01		
POL				0.10	0.20	0.20	<u>۹۱.0</u>	GU.U	cn.n	c0.0		
MDL				0.05	0.15	0.10	0.04	0.02	0.04	0.04		
2005 HI DOH EAL				1.10	1.10	1.10	1.10	1.10	1.10	1.10		
		And and a second s										

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (TCMX): 65% - 135%

DF: Reported result calculated from dilution factor, multiply detection limit by dilution factor. DO: Diluted out.

QA/QC DATA - LABORATORY CONTROL SPIKE ANALYSES

1.00 0.96 95.9%	QA/QC DATA - MATRIX SPIKE ANALYSES	Sample Name: RHS-DU-21 * Any hits in sample spiked for MS/MSD are subtracted before reported as measured concentration.
Spike Added Measured Conc. % Recovery	QA/QC DATA - MATRI)	Sample Name: RHS-DU-21 *Any hits in sample spiked

1.00 1.02 102.4% 1.00 0.89 89.2% Spike Added Measured Conc. % Recovery Spike Added Measured Conc. % Recovery

13.8%

1.00 0.83 83.0% 1.00 0.93 93.3%

11.6%

1.00 0.99 99.4%

% Recovery LIMITS: 80% TO 120% RPD LIMIT: 20%

RPD

\$_10

N Bacific in:

Environmental Services Network

Bureau Veritas North America, Inc. PROJECT #17012.012148.48 Radford High School

ESN Project #D1402050037

ORGANOCHLORINE PESTICIDES ANALYSES OF SOILS BY EPA 8081A MODIFIED	CIDES ANALYSES 0	DF SOILS BY EP.	A 8081A MODIF	IED										
SAMPLE NUMBER	Method Blank	RHS-DU-1	RHS-DU-1 Dup	RHS-DU-1.2	RHS-DU-1.3	RHS-DU-2	RHS-DU-3	RHS-DU-4	RHS-DU-5	RHS-DU-6	RHS-DU-7	RHS-DU-8		
DATE SAMPLED	-	2/4/2014	2/4/2014	2/5/2014	2/5/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	IUd	MDI
DATE EXTRACTED	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	-	
DATE ANALYZED	2/6/2014	2/11/2014	2/11/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014		
Alpha-BHC	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Beta-BHC	pu	pu	pu	pu	pu	pu	P	pu	pu	pu	pu	P	0.005	0.003
Gamma-BHC (Lindane)	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Delta-BHC	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Heptachlor	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Aldrin	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Hentachlor epoxide	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Gamma-Chlordane	pu	pu	pu	P	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Endosulfan I	pu	pu	pu	P	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Alpha-Chlordane	pu	pu	pu	ри	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Dieldrin	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.017	0.045	0.010	0.003
n.n'-DDE	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.010	pu	0.010	0.003
Endrin	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.010	0.003
Endosulfan li	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.010	0.005
0.0'-DDD	pu	pu	pu	þ	pu	pu	pu	pu	pu	pu	pu	pu	0.010	0.003
Endrin aldehvde	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.010	0.006
Endosulfan sulfate	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.010	0.005
n.n'-DDT	pu	pu	pu	pu	pu	pu	pu	pu	pu	p	pu	0.011	0.010	0.005
Endrin ketone	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.010	0.005
Methoxychlor	pu	pu	pu	pu	pu	pu	pu	þ	pu	pu	pu	pu	0.010	0.009
Chlordane (technical)	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.050	0.020
Toxaphene	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.050	0.010
<u>-</u>	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
ELAGS														

www.carrollcox.com 808-782-6627

FLAGS									
SURROGATE RECOVERY (%)	87%	80%	84%	86%	88%	86%	%06	88%	8
ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (TCMX): 65%-135%	ITS FOR SURRO	DGATE (TCMX):	65%- 135%						
DA/DC DATA - LABORATORY CONTROL SPIKE ANALYSES	CONTROL SPI	KE ANALYSES							
	del	Laboratory Control Spike	pike						
	Spiked	Measured	Spike						
	Conc.	Conc.	Recovery						
	(mg/kg)	(mg/kg)	(%)						
Beta-BHC	0.050	0.044	87.4%						
D,D,-DDE	0.100	0.085	85.1%						
Endrin ketone	0.100	0.095	94.9%						
QA/QC DATA - MATRIX SPIKE ANALYSES	E ANALYSES								
Sample Name: RHS-DU-1									
		Matrix Spike		Ma	Matrix Spike Duplicate	te			
	Spiked	Measured	Spike	Spiked	Measured	Spike			

%68

%96

37%

	Spiked	Measured	Spike	Spiked	Measured	Spike		
	Conc.	Conc.	Recovery	Conc.	Conc.	Recovery	RPD	
	(ma/ka)	(ma/ka)	(%)	(mg/kg)	(mg/kg)	(%)	(%)	FLAGS
Rata-BHC	0.050	0.048	95,2%	0.050	0.056	112.0%	16.2%	
and the second se	0.100	0.097	97.2%	0.100	0.112	111.5%	13.7%	
Endrin ketone	0.100	0.095	95.0%	0.100	0.104	103.9%	8.9%	

% Recovery LIMITS: 80% TO 120% RPD LIMIT: 20% ANALYSES PERFORMED AND REVIEWED BY : K. Carvallo

2020 Kahai Street, Honolulu, Hawaii 96819

Environmental Services Network

Pacific Inc.

Z

8. }p

Bureau Veritas North America, Inc. PROJECT #17012.012148.48 Radford High School

ESN Project #D1402050037

ORGANOCHLORINE PESTICIDES ANALYSES OF SOILS BY EPA 8081A MODIFIEI	CIDES ANALYSES C	JF SOILS BY EP	3 8081A MUDIF	FIED									
SAMPLE NUMBER	Method Blank	RHS-DU-9	RHS-DU-10	RHS-DU-11	RHS-DU-12	RHS-DU-13	RHS-DU-14	RHS-DU-15	RHS-DU-16	RHS-DU-17	RHS-DU-17 Dug		
DATE SAMPLED	-	2/4/2014	2/5/2014	2/5/2014	2/5/2014	2/5/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	DI	MDI
DATE EXTRACTED	2/6/2014	2/7/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/6/2014	2/7/2014	2/7/2014		
DATE ANALYZED	2/11/2014	2/13/2014	2/6/2014	2/13/2014	2/13/2014	2/11/2014	2/11/2014	2/11/2014	2/11/2014	2/13/2014	2/13/2014		
Alnha-BHC	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Reta-RHC	P	pu	pu	pu	pu	р	pu	pu	pu	pu	pu	0.005	0.003
Gamma-BHC (Lindane)	Pu	pu	pu	pu	pu .	р	pu	pu	pu	pu	pu	0.005	0.002
Delta-BHC	Pu	pu	pu	pu	ри	pu	pu	pu	pu	ри	pu	0.005	0.002
Hentachlor	P	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Aldrin	P	ри	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Hentschlor enovide		pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Gamma-Chlordana	p	pu	0.006	0.024	0.014	0.022	pu	pu	pu	pu	pu	0.005	0.002
Endocultan I	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Alaba-Chlordana	12	pu	0.006	pu	pu	pu	0.006	pu	pu	pu	pu	0.005	0.002
Dieldrin	P	pu	0.027	0.034	pu	pu	0.014	pu	pu	pu	pu	0.010	0.003
n n'-DDF	pu	pu	pu	pu	0.036	0.016	0.012	pu	pu	pu	pu	0.010	0.003
Fodrin		pu	pu	pu	pu	pu	pu	pu	nd	pu	pu	0.010	0.003
Endocultan II		P	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.010	0.005
		pu	pu	pu	pu	pu	pu	pu	nd	pu	pu	0.010	0.003
Endrin aldebude	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.010	0.006
Endocultan cultate	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.010	0.005
Participation of the second seco	pu	0.021	0.040	0.216	0.174	0.051	0.012	0.021	pu	0.164	0.161	0.010	0.005
Endrin Latona	pu	pu	P	pu	0.010	0.005							
			p	pu	0.010	0.009							
Chlordana (tachoical)	e Pe	pu	pu	0.113	0.127	pu	pu	pu	0.050	pu	0.172	0.050	0.020
		pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.050	0.010
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
				51.2						0E 2	DE 2 DOUT1		
FLAGS				UF Z	UF 2					1	01 41 0001		

FLAGS SURROGATE RECOVERY (%) 101% 79% 93% ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (TCMX): 65%-135%

83%

84%

87%

839

8

8

DF: Reported result calculated from dilution factor, multiply detection limit by dilution factor. DO: Diluted out. DOUT1: RPD for duplicates outside acceptable limit (20%). Matrix may be nonhomogenous.

QA/QC DATA - LABORATORY CONTROL SPIKE ANALYSES

	Lab	oratory Control S	pike
	Spiked	d Measured Spike	Spike
	Conc.	Conc.	Recovery
	(mg/kg)	(mg/kg)	(%)
Beta-BHC	0.050	0.044	87.4%
p.p'-DDE	0.100	0.085	85.1%
Endrin ketone	0.100	0.095	94.9%

% Recovery LIMITS: 80% TO 120% RPD LIMIT: 20%

ANALYSES PERFORMED AND REVIEWED BY : K. Carvallo

Environmental Services Network

Pacific Inc.

\$. 1p

Bureau Veritas North America, Inc. PROJECT #17012.012148.48 Radford High School

ESN Project #D1402050037

ORGANOCHLORINE PESTICIDES ANALYSES OF SOILS BY EPA 8081A MODIFIED SAMPLE NUMBER Method Blank RHS-DU-17.2 RHS-DU-17.3 1	CIDES ANALYSES O	PF SOILS BY EPA RHS-DU-17.2	8081A MODIFIE RHS-DU-17.3	ED RHS-DU-18	RHS-DU-19	RHS-DU-20	RHS-DU-21	RHS-DU-21 Dup	RHS-DU-22	RHS-DU-23	RHS-DU-24	RHS-DU-25		
DATE SAMPLED	-	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	POL	MDL
DATE EXTRACTED	2/6/2014	2/6/2014	2/7/2014	2/7/2014	2/7/2014	2/6/2014	2/6/2014	2/6/2014	2/7/2014	2/7/2014	2/6/2014	2/6/2014		
DATE ANALYZED	2/13/2014	2/13/2014	2/13/2014	2/13/2014	2/13/2014	2/11/2014	2/13/2014	2/13/2014	2/13/2014	2/13/2014	2/11/2014	2/11/2014		
Aluha-RHC	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Reference	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	멷	0.005	0.003
Gamma-BHC (Lindane)	p	pu	pu	pu	pu	pu	pu	pu	pu	pu	p	P	0.005	0.002
Delta-BHC	P	pu	pu	. pu	pu	pu	pu	pu	pu	pu ,	pu	pu	0.005	0.002
Hentachior	Pe	2	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Aldrin	p	P	pu	pu	pu	pu	Pu	pu	pu	pu	p	p	0.005	0.002
Hantachlor snovids	2		pu	рц	pu	pu	pu	pu	pu	р	pu	pu	0.005	0.002
Commo-Chlordene	P				pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Endoeilfan I	pu	2	pu	pu	pu	pu	ри	pu	pu	pu	pu	pq	0.005	0.002
Alaha-Chlordene		Pe	pu	pu	pu	pu	pu	pu	pu	0.011	pu	pu	0.005	0.002
Dioldrin		2	P	2	P	pu	pu	pu	pu	0.017	pu	pu	0.010	0.003
		2	Pe	0.030	pu	pu	pu	pu	pu	0.011	pu	pu	0.010	0.003
		2	P	pu	pu	pu	pu	pu	pq	pu	pu	pu	0.010	0.003
Endanifan II			P	0.054	pu	pu	pu	p	pu	pu	pu	pu	0.010	0.005
	pr.		2	pu	P	0.013	pu	pq	pu	pu	pu	pu	0.010	0.003
Endrin aldahuda	p p	P	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	0.010	0.006
Endoenfan enifate	e pe	P	pu	pu	pu	pu	pu	pu	pu	ри	pu	pu	0.010	0.005
		0.195	0.175	0.132	0.025	0.019	0.015	0.018	0.022	0.074	pu	pq	0.010	0.005
Endrin Latone		P	pu	Pu	pu	pu	pu	pu	pu	pu	pu	pu	0.010	0.005
	2		Ē	þ	pu	pu	pu	pu	р	pu	pu	pu	0.010	0.009
Chardene (technicel)			0.225	ри	pu	pu	pu	pu	pu	0.057	pu	pu	0.050	0.020
	p pe	2		Į D	pu	pu	pu	pu	pu	pu	pu	pu	0.050	0.010
	(ma/ka)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	2	1												

FLAGS DURDGATE RECOVERY (%) 96% DU SURROGATE (TCMX): 65%-135% ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (TCMX): 65%-135% ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (TCMX) 666/

85%

107%

80°

100%

83%

R1%

DF: Reported result calculated from dilution factor, multiply detection limit by dilution factor. DO: Diluted out.

QA/QC DATA - LABORATORY CONTROL SPIKE ANALYSES

Spiked Measured Conc. Conc. R Conc. Conc. R 0.050 0.047 0.097 0.050 0.097 0.097		Laboratory Control Spike
Conc. Conc. [mg/kg] (mg/kg) 0.050 0.048		Spike
(mg/kg) (mg/kg) 0.050 0.048 0.100 0.097	-	Recovery
0.050 0.048	-	(%)
0.100 0.097	0.050	96.6%
0 100	0.100	96.7%
0.100	Endrin ketone 0.100 0.100	99.7%

RPD (%) 11.0% 19.9% Spike Recovery (%) 99.4% 119.0% 109.9% Conc. (mg/kg) 0.050 0.119 0.110 Spiked Conc. (mg/kg) 0.050 0.100 0.100 Spike Recovery (%) 89.0% 97.5% 118.1% latrix Spike Measured Conc. (mg/kg) 0.045 0.098 0.118 Spiked Conc. (mg/kg) 0.050 0.100 0.100 Beta-BHC p.p'-DDE Endrin ketone

FLAGS

% Recovery LIMITS: 80% TO 120% RPD LIMIT: 20%

ANALYSES PERFORMED AND REVIEWED BY : K. Carvallo

Bureau Veritas North America, Inc. PROJECT #17012.012148.48 Radford High School

Environmental Services Network

ESN Project #D1402050037

			· · · · · · · · · · · · · · · · · · ·	C 00 110 0110						
SAMPLE NUMBER	Method Blank	RHS-DU-26	RHS-DU-26.2 RHS-DU-26.3	HHS-DU-20.3	RHS-DU-27	87-00-28	67-00-0HH	RHS-DU-29 Dug		
DATE SAMPLED	-	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	2/4/2014	DOI	MDL
DATE EXTRACTED	2/6/2014	2/7/2014	2/7/2014	2/7/2014	2/7/2014	2/7/2014	2/7/2014	2/7/2014	;	
DATE ANALYZED	2/13/2014	2/13/2014	2/13/2014	2/13/2014	2/13/2014	2/11/2014	2/11/2014	2/11/2014		
Aloha-RHC	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Reta-BHC	pu	pu	pu	pu	pu	pu	pu	pu	0.005	0.003
Gamma-BHC (Lindane)	100	þu	P	pq	pu .	pu	pu	p	0.005	0.002
			pu	pu	pu	pu	P	pu	0.005	0.002
Hentechlor	p	pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Aldrin	2	þ	рц	pu	pu	pu	pu	pu	0.005	0.002
Hentachlor enovide		pu	pu	pu	pu	pu	pu	pu	0.005	0.002
Commo Chlordone		Pu	pu	pu	pu	pu	P	pu	0.005	0.002
Gaimma-Cinordane Endosulfan I		pu	pu	pu	pu	pu	ри	pu	0.005	0.002
Alaba-Chiordana Alaba-Chiordana		pu	pu	pu	pu	pu	ри	pu	0.005	0.002
Dialdrin		pu	pu	pu	pu	pu	pu	pu	0.010	0.003
	pe	pu	pu	pu	pu	pu	pu	pu	0.010	0.003
Fudrin	pu	pu	pu	pu	ри	pu	pu	P	0.010	0.003
Endoeulfan II	pu	pu	pu	pu	pu	pu	pu	pu	0.010	0.005
	pu	pu	pu	pu	pu	pu	pu	Pu	0.010	0.003
Endrin aldehvde	pu	pu	pu	nd	pu	pu	pu	pu	0.010	0.006
Endocultan sultate	pu	pu	pu	pu	pu	pu	pu	P	0.010	0.005
	2	pu	pu	pu	pu	pu	pu	pu	0.010	0.005
Endrin Latona	pu	pu	pu	pu	pu	pu	pu	pu	0.010	0.005
Mathovychlor		pu	pu	pu	pu	P	pu	pu	0.010	0.009
Chlordene (technical)	pu	P	pu	pu	pu	pu	pu	pu	0.050	0.020
Coverhene		þ	pu	pu	pu	pu	pu	pu	0.050	0.010
vapricette	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
FI AGS										
CLIPPOCATE DECOVEDV (%)	96%	95%	76%	88%	94%	96%	94%	85%		

OA/OC DATA - LABORATORY CONTROL SPIKE ANALYSES

	Lab	aboratory Control Spike	spike
	Spiked	Measured	Spike
	Conc.	Conc.	Recovery
	(mg/kg)	(mg/kg)	(%)
Beta-BHC	0.050	0.048	96.6%
n.n'-DDE	0.100	0.097	96.7%
Endrin ketone	0.100	0.100	99.7%

ANALYSES PERFORMED AND REVIEWED BY : K. Carvallo

Bureau Veritas North America, Inc. RADFORD HIGH SCHOOL PROJECT Client Project #17012-012148.48 ESN Project #D1402050037 Hawaii ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Diesel Range Organics & Lube Oil Range Organics in Soil
by Method NWTPH-Dx Extended (8015M)

Sample	Date	Date	Surrogate	Diesel Range Organics	Lube Oil Range Organics
Number	Prepared	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	2/10/2014	2/11/2014	112	nd	nd
LCS	2/10/2014	2/11/2014	100	107%	
RHS-DU-1	2/10/2014	2/11/2014	109	nd	nd
RHS-DU-1.2	2/10/2014	2/11/2014	105	nd	nd
RHS-DU-1.3	2/10/2014	2/11/2014	104	nd	nd
RHS-DU-2	2/10/2014	2/11/2014	98	nd	nd
RHS-DU-3	2/10/2014	2/11/2014	96	nd	nd
RHS-DU-4	2/10/2014	2/11/2014	104	nd	nd
RHS-DU-5	2/10/2014	2/11/2014	106	nd	nd
RHS-DU-6	2/10/2014	2/11/2014	109	nd	nd
RHS-DU-7	2/10/2014	2/11/2014	77	nd	nd
RHS-DU-8	2/10/2014	2/11/2014	89	nd	nd
RHS-DU-9	2/10/2014	2/11/2014	114	nd	nd
RHS-DU-10	2/10/2014	2/11/2014	78	nd	nd
RHS-DU-11	2/10/2014	2/11/2014	115	nd	nd
RHS-DU-12	2/10/2014	2/11/2014	111	nd	nd
RHS-DU-13	2/12/2014	2/13/2014	89	nd	nd
RHS-DU-13 Duplicate	2/12/2014	2/13/2014	83	nd	nd
RHS-DU-14	2/12/2014	2/13/2014	90	nd	nd
RHS-DU-15	2/12/2014	2/13/2014	82	nd	nd
RHS-DU-16	2/12/2014	2/13/2014	76	nd	nd
RHS-DU-16 Duplicate	2/12/2014	2/13/2014	84	nd	nd
RHS-DU-17	2/10/2014	2/11/2014	109	nd	nd
RHS-DU-17.2	2/10/2014	2/11/2014	100	nd	nd
RHS-DU-17.3	2/10/2014	2/11/2014	104	nd	nd
RHS-DU-18	2/10/2014	2/11/2014	90	nd	nd
RHS-DU-19	2/10/2014	2/11/2014	78	nd	nd
RHS-DU-20	2/10/2014	2/11/2014	96	nd	nd
RHS-DU-21	2/10/2014	2/11/2014	91	nd	nd
RHS-DU-22	2/11/2014	2/12/2014	89	nd	nd
RHS-DU-23	2/11/2014	2/12/2014	87	nd	nd
RHS-DU-24	2/11/2014	2/12/2014	93	nd	nd
RHS-DU-25	2/11/2014	2/12/2014	90	nd	nd
RHS-DU-26	2/11/2014	2/12/2014	93	nd	nd
RHS-DU-26.2	2/11/2014	2/12/2014	92	nd	nd
RHS-DU-26.3	2/12/2014	2/13/2014	77	nd	nd
RHS-DU-27	2/12/2014	2/13/2014	80	nd	nd
RHS-DU-28	2/12/2014	2/13/2014	78	nd	nd
RHS-DU-29	2/12/2014	2/13/2014	77	nd	nd
RHS-DU-29 Duplicate	2/12/2014	2/13/2014	77	nd	nd
Reporting Limits				50	100

"nd" Indicates not detected at the listed detection limits.

"---" Indicates analyte not tested.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 50% TO 150%

Bureau Veritas North America, Inc RADFORD HIGH SCHOOL PROJECT Client Project #17012-012148.48 ESN Project #D1402050037 Hawaii ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Semivolatile Organic Compounds in Soil by Method 8270 Analytical Results									
Analytical Result		MTH BLK	LCS	RHS-DU-1	RHS-DU-1.2	RHS-DU-1.3	RHS-DU-2	RHS-DU-3	
Date extracted	Reporting	02/10/14	02/10/14	02/10/14	02/10/14	02/10/14	02/10/14	02/10/14	
Date analyzed	Limits	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	
Moisture, %	(mg/kg)			6%	9%	12%	12%	12%	
Pyridine	1.0	nd		nd	nd	nd	nd	nd	
Aniline	1.0	nd		nd	nd	nd	nd	nd	
Phenol	0.41*	nd		nd	nd	nd	nd	nd	
2-Chlorophenol	0.36*	nd		nd	nd	nd	nd	nd	
Bis (2-chloroethyl) ether	0.40*	nd		nd	nd	nd	nd	nd	
1,3-Dichlorobenzene	0.34*	nd		nd	nd	nd	nd	nd	
1,4-Dichlorobenzene	0.26*	nd	150%	nd	nd	nd	nd	nd	
1,2-Dichlorobenzene	0.38*	nd		nd	nd	nd	nd	nd	
Benzyl alcohol	1.0	nd		nd	nd	nd	nd	nd	
Hexacholorethane	0.39*	nd		nd	nd	nd	nd	nd	
N-Nitroso-di-n-propylamine	1.0	nd	131%	nd	nd	nd	nd	nd	
3,4-Methylphenol (m,p-cresol)	1.0	nd		nd	nd	nd	nd	nd	
2-Methylphenol (o-cresol)	1.0	nd		nd	nd	nd	nd	nd	
Bis (2-chloroisopropyl) ether	0.42*	nd		nd	nd	nd	nd	nd	
Nitrobenzene	0.41*	nd		nd	nd	nd	nd	nd	
Isophorone	0.41*	nd		nd	nd	nd	nd	nd	
2-Nitrophenol	5.0	nd		nd	nd	nd	nd	nd	
2,4-Dimethylphenol	1.0	nd		nd	nd	nd	nd	nd	
Bis (2-chloroethoxy) methane	1.0	nd		nd	nd	nd	nd	nd	
2,4-Dichlorophenol	0.36*	nd	1 4 1 0 /	nd	nd	nd	nd	nd	
1,2,4-Trichlorobenzene	0.40*	nd	141%	nd	nd	nd	nd	nd	
Naphthalene	1.0	nd		nd	nd	nd	nd	nd	
4-Chloroaniline	0.46*	nd	1.400/	nd	nd	nd	nd	nd	
Hexachlorobutadiene	0.43*	nd	149%	nd	nd	nd	nd	nd	
4-Chloro-3-methylphenol	5.0	nd		nd	nd	nd	nd	nd	
2-Methylnapthalene	1.0	nd		nd	nd	nd	nd	nd	
1-Methylnapthalene	1.0	nd		nd	nd	nd	nd	nd	
Hexachlorocyclopentadiene	1.0 5.0	nd		nd	nd	nd	nd	nd	
2,4,6-Trichlorophenol	5.0	nd		nd	nd	nd	nd	nd	
2,4,5-Trichlorophenol	3.0 1.0	nd		nd	nd	nd	nd	nd	
2-Chloronaphthalene 2-Nitroaniline	5.0	nd nd		nd nd	nd nd	nd nd	nd nd	nd nd	
1,4-Dinitrobenzene	5.0	nd		nd	nd	nd	nd	nd	
,	0.1	nd		nd	nd	nd	nd	nd	
Acenaphthylene 1,3-Dinotrobenzene	0.1	nd		nd	nd	nd	nd	nd	
Dimethylphthalate	1.0	nd		nd	nd	nd	nd	nd	
2,6-Dinitrotoluene	1.0	nd		nd	nd	nd	nd	nd	
1,2-Dinitrobenzene	1.0	nd		nd	nd	nd	nd	nd	
Acenaphthene	0.1	nd	145%	nd	nd	nd	nd	nd	
3-Nitroaniline	5.0	nd	14570	nd	nd	nd	nd	nd	
2,4-Dinitrophenol	1.0*	nd	51%	nd	nd	nd	nd	nd	
2,4-Dinitrotoluene	0.35*	nd	145%	nd	nd	nd	nd	nd	
4-Nitrophenol	5.0	nd	61%	nd	nd	nd	nd	nd	
Dibenzofuran	1.0	nd	0170	nd	nd	nd	nd	nd	
2,3,4,6-Tetrachlorophenol	1.0	nd		nd	nd	nd	nd	nd	
2,3,5,6-Tetrachlorophenol	1.0	nd		nd	nd	nd	nd	nd	
Fluorene	0.1	nd		nd	nd	nd	nd	nd	
4-Chlorophenylphenylether	1.0	nd		nd	nd	nd	nd	nd	
Diethylphthalate	1.0	nd		nd	nd	nd	nd	nd	
4-Nitroaniline	5.0	nd		nd	nd	nd	nd	nd	
4,6-Dinitro-2-methylphenol	5.0	nd		nd	nd	nd	nd	nd	
N-nitrosodiphenylamine	1.0	nd		nd	nd	nd	nd	nd	
Azobenzene	1.0	nd		nd	nd	nd	nd	nd	
4-Bromophenylphenylether	1.0	nd		nd	nd	nd	nd	nd	
Hexachlorobenzene	0.45*	nd		nd	nd	nd	nd	nd	

Analysis of Semivolatile Organic Compounds in Soil by Method 8270

Page 1 of 12

Bureau Veritas North America, Inc RADFORD HIGH SCHOOL PROJECT Client Project #17012-012148.48 ESN Project #D1402050037 Hawaii

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analytical Results		MTH BLK	LCS	RHS-DU-1	RHS-DU-1.2	RHS-DU-1.3	RHS-DU-2	RHS-DU-
Date extracted	Reporting	02/10/14	02/10/14	02/10/14	02/10/14	02/10/14	02/10/14	02/10/14
Date analyzed	Limits	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14
Moisture, %	(mg/kg)			6%	9%	12%	12%	12%
Pentachlorophenol	1.0*	nd	72%	nd	nd	nd	nd	nd
Phenanthrene	0.1	nd		nd	nd	nd	nd	nd
Anthracene	0.1	nd		nd	nd	nd	nd	nd
Carbazole	1.0	nd		nd	nd	nd	nd	nd
Di-n-butylphthalate	1.0	nd		nd	nd	nd	nd	nd
Fluoranthene	0.1	nd	128%	nd	nd	nd	0.12	0.12
Pyrene	0.1	nd	133%	nd	nd	nd	0.15	0.14
Butylbenzylphthalate	1.0	nd		nd	nd	nd	nd	nd
Bis(2-ethylhexyl) adipate	1.0	nd		nd	nd	nd	nd	nd
Benzo(a)anthracene	0.1	nd		nd	nd	nd	nd	nd
Chrysene	0.1	nd		nd	nd	nd	nd	0.13
Bis (2-ethylhexyl) phthalate	1.0	nd		nd	nd	nd	nd	nd
Di-n-octyl phthalate	1.0	nd	138%	nd	nd	nd	nd	nd
Benzo(b)fluoranthene	0.1	nd		nd	nd	nd	nd	nd
Benzo(k)fluoranthene	0.1	nd		nd	nd	nd	nd	nd
Benzo(a)pyrene	0.1	nd	69%	nd	nd	nd	nd	nd
Dibenzo(a,h)anthracene	0.1	nd		nd	nd	nd	nd	nd
Benzo(ghi)perylene	0.1	nd		nd	nd	nd	nd	nd
Indeno(1,2,3-cd)pyrene	0.1	nd		nd	nd	nd	nd	nd
Surrogate recoveries								
2-Fluorophenol		132%	141%	137%	127%	130%	121%	129%
Phenol-d6		133%	143%	130%	111%	121%	106%	115%
Nitrobenzene-d5		120%	152%	114%	111%	116%	109%	117%
2-Fluorobiphenyl		141%	145%	143%	141%	138%	139%	143%
2,4,6-Tribromophenol		49%	123%	57%	54%	65%	70%	74%
4-Terphenyl-d14		115%	123%	112%	108%	106%	101%	99%

Analysis of Semivolatile Organic Compounds in Soil by Method 8270

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

* - method detection limit

Acceptable Recovery limits: 2-Fluorophenol: 10-135 % Phenol - d5: 10-135 % Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% 2,4,6- Tribromophenol: 29-159% p-Terphenyl-d14: 50-150%

Page 2 of 12

Bureau Veritas BV-RADFORD HIGH SCHOOL PROJECT Client Project #17012-012148.48 ESN Project #D1402050037 Hawaii ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Automatical Results RHS DU-4 RHS DU-5 RHS DU-7 RHS DU-7<	Analytical Results	Analysis of S	emivolatile O	organic Comp	ounds in Soil I	by Method 827	0		
Date sampled Deporting 02/10/14 02/11/14	Anarytical Results		RHS-DU-4	RHS-DU-5	RHS-DU-6	RHS-DU-7	RHS-DU-8	RHS-DU-9	RHS-DU-10
Date analyzedLimits02/11/1402/11/1402/11/1402/11/1402/11/1402/11/1402/11/14Pyridine1.0ndndndndndndndndndAniline1.0ndndndndndndndndndPyridine1.0ndndndndndndndndndndBis (2-hitocochy)) ether0.36°nd <td< th=""><th>Date extracted</th><th>Reporting</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	Date extracted	Reporting							
Moisure, % (mg/kg) 18% 14% 16% 22% 15% 9% 10% Pyridine 1.0 nd <			02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14
Amine1.0ndn		(mg/kg)		14%	16%		15%	9%	10%
Amine1.0ndn									
Phenol 0.41* nd	Pyridine	1.0	nd	nd	nd	nd	nd	nd	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Aniline	1.0	nd	nd	nd	nd	nd	nd	nd
Bis (2-ki)forestry)) ether 0.40* nd	Phenol	0.41*	nd	nd	nd	nd	nd	nd	nd
1.3-Dichlorobenzene 0.34* nd nd nd nd nd nd nd nd nd 1.2-Dichlorobenzene 0.38* nd nd nd nd nd nd nd nd nd 1.2-Dichlorobenzene 0.38* nd	2-Chlorophenol	0.36*	nd	nd	nd	nd	nd	nd	nd
14-Dickhorobenzene 0.26^{+} nd<	Bis (2-chloroethyl) ether	0.40*	nd	nd	nd	nd	nd	nd	nd
1.2-Dichlorobenzene 0.38* nd	1,3-Dichlorobenzene	0.34*	nd	nd	nd	nd	nd	nd	nd
Benzy alcohol1.0nd </td <td>1,4-Dichlorobenzene</td> <td>0.26*</td> <td>nd</td> <td>nd</td> <td>nd</td> <td>nd</td> <td>nd</td> <td>nd</td> <td>nd</td>	1,4-Dichlorobenzene	0.26*	nd	nd	nd	nd	nd	nd	nd
Hexacholorethane 0.39^{*} ndndndndndndndndndnd3.4-Methylphenol (mp-cresso)1.0nd	1,2-Dichlorobenzene	0.38*	nd	nd	nd	nd	nd	nd	nd
$\begin{split} N-Niroso-di-propylamine 1.0 nd nd n$	Benzyl alcohol	1.0	nd	nd	nd	nd	nd	nd	nd
3.4-Methylphenol (m.pc-resol) 1.0 nd		0.39*	nd	nd	nd	nd		nd	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			nd	nd	nd	nd	nd	nd	nd
Bis (2-shoroisopropy)) ether 0.42* nd nd nd nd nd nd nd nd Nitrobenzene 0.41* nd nd nd nd nd nd nd nd Nitrobenzene 0.41* nd nd nd nd nd nd nd nd nd 2-Nitrophenol 5.0 nd 2-Nitrophenol 5.0 nd 2-Nitrophenol 5.0 nd 1.2.4-Dinethylphenol 1.0 nd				nd	nd			nd	nd
Nitrobenzene 0.41^* nd									
									nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1								
Bis (2-chlorophenol1.0nd <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
Naphthalene1.0nd <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
4-Chloroaniline 0.46° nd <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Hexachlorobutadiene 0.43^* nd </td <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1								
4-Chloro-3-methylphenol5.0ndndndndndndndnd2-Methylnapthalene1.0ndndndndndndndnd1-Methylnapthalene1.0ndndndndndndndnd2.4.5-Trichlorophenol5.0ndndndndndndndnd2.4.5-Trichlorophenol5.0ndndndndndndndnd2.4.5-Trichlorophenol5.0ndndndndndndndnd2.4.5-Trichlorophenol5.0ndndndndndndndnd2.4.5-Trichlorophenol5.0ndndndndndndndnd1.4-Dinitrobenzene5.0ndndndndndndndnd1.4-Dinitrobenzene0.1ndndndndndndndnd1.3-Dinitrobenzene0.28*ndndndndndndndnd2.4-Dinitrotoluene1.0ndndndndndndndndnd2.4-Dinitrotoluene0.35*ndndndndndndndndnd2.4-Dinitrotoluene0.35*ndndndndndndndndndnd2.3.4-Ofertrachlorophenol1.0nd <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
1-Methylnapthalene1.0nd <th< td=""><td>÷ 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	÷ 1								
Hexachlorocyclopentadiene1.0nd<									
2.4.6-Trichlorophenol5.0ndndndndndndndndnd2.4.5-Trichlorophenol5.0ndndndndndndndndnd2.Chloronaphthalene1.0ndndndndndndndndnd1.4-Dinitrobenzene5.0ndndndndndndndndnd1.3-Dinotrobenzene0.1ndndndndndndndndnd1.3-Dinotrobenzene0.28*ndndndndndndndndnd2.6-Dinitrotoluene1.0ndndndndndndndndndnd1.2-Dinitrobenzene1.0ndndndndndndndndndnd2.4-Dinitrobuene1.0ndndndndndndndndndnd2.4-Dinitrobuene0.1ndndndndndndndndndnd2.4-Dinitrobenzene1.0*ndndndndndndndndndnd2.4-Dinitrobenzene1.0*ndndndndndndndndndnd2.4-Dinitrobenzene1.0*ndndndndndndndndndnd2.4-Dinitrobenzene1.0* </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2,4,5-Trichlorophenol5.0ndndndndndndndndnd2-Chloronaphthalene1.0ndndndndndndndnd2-Nitroaniline5.0ndndndndndndndnd1,4-Dinitrobenzene5.0ndndndndndndndnd1,3-Dinotrobenzene0.28*ndndndndndndndnd0ndndndndndndndndndnd1,3-Dinotrobenzene0.28*ndndndndndndndnd0ndndndndndndndndndndnd2,6-Dinitrobuene1.0ndndndndndndndndnd3-Nitroaniline5.0ndndndndndndndndnd2,4-Dinitrobuene0.35*ndndndndndndndndnd2,4-Dinitrobuene0.50ndndndndndndndndnd2,4-Dinitrobuene0.50ndndndndndndndndnd2,4-Dinitrobuene1.0ndndndndndndndndnd2,3,5,6-Tetrachlorophenol1.0nd									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
2-Nitroaniline5.0ndndndndndndndndndnd $1,4$ -Dinitrobenzene5.0ndndndndndndndndnd $Acenaphthylene0.1ndndndndndndndndnd1,3-Dinotrobenzene0.28*ndndndndndndndndndDimethylphthalate1.0ndndndndndndndndnd2,6-Dinitrobenzene1.0ndndndndndndndnd2,4-Dinitrobenzene0.1ndndndndndndndnd3-Nitroaniline5.0ndndndndndndndnd2,4-Dinitrobluene0.35*ndndndndndndndnd2,3,5,6-Tetrachlorophenol1.0ndndndndndndndnd2,3,5,6-Tetrachlorophenol1.0ndndndndndndndndnd2,3,5,6-Tetrachlorophenol1.0ndndndndndndndnd2,3,5,6-Tetrachlorophenol1.0ndndndndndndndnd2,3,5,6-Tetrachlorophenol1.0ndndndndndndndnd$									
1,4-Dinitrobenzene5.0ndndndndndndndndndAcenaphthylene0.1ndndndndndndndndnd1,3-Dinotrobenzene0.28*ndndndndndndndndndDimethylphthalate1.0ndndndndndndndnd2,6-Dinitrotoluene1.0ndndndndndndnd1,2-Dinitrobenzene1.0ndndndndndndnd2,6-Dinitrotoluene0.1ndndndndndndnd3-Nitroaniline5.0ndndndndndndnd2,4-Dinitrotoluene0.35*ndndndndndndnd2,3-6-Tetrachlorophenol1.0ndndndndndndnd2,3,5,6-Tetrachlorophenol1.0ndndndndndndnd10ndndndndndndndndndnd10ndndndndndndndndnd2,3,5,6-Tetrachlorophenol1.0ndndndndndnd10ndndndndndndndndnd10ndndndndndndnd </td <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1								
Acenaphthylene0.1nd<									
1,3-Dinorobenzene 0.28^* ndndndndndndndndndndDimethylphthalate1.0ndndndndndndndndnd2,6-Dinitrotoluene1.0ndndndndndndndndnd1,2-Dinitrobenzene1.0ndndndndndndndndndAcenaphthene0.1ndndndndndndndndnd3-Nitroaniline5.0ndndndndndndndnd2,4-Dinitrotoluene0.35*ndndndndndndndnd4-Nitrophenol5.0ndndndndndndndndnd2,3,4,6-Tetrachlorophenol1.0ndndndndndndndnd2,3,5,6-Tetrachlorophenol1.0ndndndndndndndnd4-Chlorophenylphenylether1.0ndndndndndndndnd4-Chlorophenylphenylether1.0ndndndndndndndnd4-Chlorophenylphenylether1.0ndndndndndndndnd4-Chlorophenylphenylether1.0ndndndndndndndnd4-Chlorophenylph	,								
Dimethylphthalate1.0ndndndndndndndnd2,6-Dinitrotoluene1.0ndndndndndndndndnd1,2-Dinitrobenzene1.0ndndndndndndndndndAcenaphthene0.1ndndndndndndndndnd3-Nitroaniline5.0ndndndndndndndnd2,4-Dinitrotoluene0.35*ndndndndndndnd2,4-Dinitrotoluene0.35*ndndndndndndnd2,4-Dinitrotoluene0.35*ndndndndndndnd2,4-Dinitrotoluene1.0ndndndndndndnd2,4-Dinitrotoluene0.35*ndndndndndndnd2,4-Dinitrotoluene0.0ndndndndndndnd2,4-Dinitrotoluene0.0ndndndndndndnd1,0ndndndndndndndndnd2,3,5,6-Tetrachlorophenol1.0ndndndndndnd4-Chlorophenylphenylether1.0ndndndndndnd4-Chlorophenylphenylphenol5.0ndndndnd	1 2								
2,6-Dinitrotoluene1.0ndndndndndndndndnd1,2-Dinitrobenzene1.0ndndndndndndndndnd3-Nitroaniline0.1ndndndndndndndndnd3-Nitroaniline5.0ndndndndndndndnd2,4-Dinitrophenol1.0*ndndndndndndnd2,4-Dinitrotoluene0.35*ndndndndndndnd4-Nitrophenol5.0ndndndndndndnd1.0ndndndndndndndndnd2,3,5,6-Tetrachlorophenol1.0ndndndndndndndFluorene0.1ndndndndndndndnd4-Chlorophenylphenylether1.0ndndndndndndndDiethylphthalate1.0ndndndndndndndnd4-Stirosoliphenylphenylether1.0ndndndndndndnd7.3,5,6-Tetrachlorophenol1.0ndndndndndndndFluorene0.1ndndndndndndndndA-Chlorophenylphenylether1.0nd <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1,2-Dinitrobenzene1.0ndndndndndndndndndAcenaphthene0.1ndndndndndndndndnd3-Nitroaniline5.0ndndndndndndndnd2,4-Dinitrophenol1.0*ndndndndndndndnd2,4-Dinitrotoluene0.35*ndndndndndndndnd4-Nitrophenol5.0ndndndndndndndnd2,3,4,6-Tetrachlorophenol1.0ndndndndndndnd2,3,4,6-Tetrachlorophenol1.0ndndndndndndnd2,3,5,6-Tetrachlorophenol1.0ndndndndndndndFluorene0.1ndndndndndndndnd4-Chlorophenylphenylether1.0ndndndndndndnd4-Chlorophenylphenylether1.0ndndndndndndndnd4-Chlorophenylphenylether1.0ndndndndndndndnd4-Chlorophenylphenylether1.0ndndndndndndndnd4-Chlorophenylphenylether1.0ndndndndndndnd <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Acenaphthene 0.1 nd<									
3-Nitroaniline 5.0 ndn									
2,4-Dinitrotoluene0.35*ndndndndndndndndnd4-Nitrophenol5.0ndndndndndndndndndDibenzofuran1.0ndndndndndndndndnd2,3,4,6-Tetrachlorophenol1.0ndndndndndndndnd2,3,5,6-Tetrachlorophenol1.0ndndndndndndnd2,3,5,6-Tetrachlorophenol1.0ndndndndndndndFluorene0.1ndndndndndndndnd4-Chlorophenylphenylether1.0ndndndndndndnd4-Nitroaniline5.0ndndndndndndndnd4,6-Dinitro-2-methylphenol5.0ndndndndndndndN-nitrosodiphenylamine1.0ndndndndndndndAzobenzene1.0ndndndndndndndnd4-Bromophenylphenylether1.0ndndndndndndnd		5.0	nd	nd	nd	nd	nd	nd	nd
4-Nitrophenol5.0ndndndndndndndndDibenzofuran1.0ndndndndndndndndnd2,3,4,6-Tetrachlorophenol1.0ndndndndndndndnd2,3,5,6-Tetrachlorophenol1.0ndndndndndndndndFluorene0.1ndndndndndndndnd4-Chlorophenylphenylether1.0ndndndndndndndDiethylphthalate1.0ndndndndndndnd4-Nitroaniline5.0ndndndndndndnd4,6-Dinitro-2-methylphenol5.0ndndndndndndndN-nitrosodiphenylamine1.0ndndndndndndndnd4-Bromophenylphenylether1.0ndndndndndndndnd	2,4-Dinitrophenol	1.0*	nd	nd	nd	nd	nd	nd	nd
Dibenzofuran1.0ndndndndndndndndnd2,3,4,6-Tetrachlorophenol1.0ndndndndndndndnd2,3,5,6-Tetrachlorophenol1.0ndndndndndndndndFluorene0.1ndndndndndndndnd4-Chlorophenylphenylether1.0ndndndndndndndDiethylphthalate1.0ndndndndndndnd4-Nitroaniline5.0ndndndndndndnd4,6-Dinitro-2-methylphenol5.0ndndndndndndN-nitrosodiphenylamine1.0ndndndndndndnd4-Bromophenylphenylether1.0ndndndndndndnd4-Bromophenylphenylether1.0ndndndndndndnd	2,4-Dinitrotoluene	0.35*	nd	nd	nd	nd	nd	nd	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4-Nitrophenol	5.0	nd	nd	nd	nd	nd	nd	nd
2,3,5,6-Tetrachlorophenol1.0ndndndndndndndndndndndFluorene0.1ndndndndndndndndndnd4-Chlorophenylphenylether1.0ndndndndndndndndDiethylphthalate1.0ndndndndndndndnd4-Nitroaniline5.0ndndndndndndnd4,6-Dinitro-2-methylphenol5.0ndndndndndndN-nitrosodiphenylamine1.0ndndndndndnd4-Bromophenylphenylether1.0ndndndndndnd	Dibenzofuran	1.0	nd	nd	nd	nd	nd	nd	nd
Fluorene0.1ndndndndndndndndnd4-Chlorophenylphenylether1.0ndndndndndndndndDiethylphthalate1.0ndndndndndndndnd4-Nitroaniline5.0ndndndndndndndnd4,6-Dinitro-2-methylphenol5.0ndndndndndndndN-nitrosodiphenylamine1.0ndndndndndndnd4-Bromophenylphenylether1.0ndndndndndndnd	2,3,4,6-Tetrachlorophenol	1.0	nd	nd	nd	nd	nd	nd	nd
4-Chlorophenylphenylether1.0ndndndndndndndndndDiethylphthalate1.0ndndndndndndndndnd4-Nitroaniline5.0ndndndndndndndndnd4,6-Dinitro-2-methylphenylamine5.0ndndndndndndndndN-nitrosodiphenylamine1.0ndndndndndndndndAzobenzene1.0ndndndndndndndnd4-Bromophenylphenylether1.0ndndndndndndnd	2,3,5,6-Tetrachlorophenol	1.0	nd	nd	nd	nd	nd	nd	nd
Diethylphthalate1.0ndndndndndndndnd4-Nitroaniline5.0ndndndndndndndnd4,6-Dinitro-2-methylphenol5.0ndndndndndndndN-nitrosodiphenylamine1.0ndndndndndndndAzobenzene1.0ndndndndndndnd4-Bromophenylphenylether1.0ndndndndndnd			nd	nd	nd	nd	nd	nd	nd
4-Nitroaniline5.0ndndndndndndndnd4,6-Dinitro-2-methylphenol5.0ndndndndndndndndN-nitrosodiphenylamine1.0ndndndndndndndndAzobenzene1.0ndndndndndndndnd4-Bromophenylphenylether1.0ndndndndndnd			nd	nd	nd	nd	nd	nd	nd
4,6-Dinitro-2-methylphenol5.0ndndndndndndndndN-nitrosodiphenylamine1.0ndndndndndndndndAzobenzene1.0ndndndndndndndnd4-Bromophenylphenylether1.0ndndndndndndnd			nd	nd	nd	nd	nd	nd	nd
N-nitrosodiphenylamine1.0ndndndndndndndAzobenzene1.0ndndndndndndndnd4-Bromophenylphenylether1.0ndndndndndndnd			nd	nd	nd	nd	nd	nd	nd
Azobenzene1.0ndndndndndndnd4-Bromophenylphenylether1.0ndndndndndndnd					nd				
4-Bromophenylphenylether 1.0 nd nd nd nd nd nd nd nd									
Hexachlorobenzene 0.45* nd nd nd nd nd nd nd									
	Hexachlorobenzene	0.45*	nd	nd	nd	nd	nd	nd	nd

Page 3 of 12

Bureau Veritas BV-RADFORD HIGH SCHOOL PROJECT Client Project #17012-012148.48 ESN Project #D1402050037 Hawaii ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Semivolatile	Organic Compounds in	Soil by Method 8270

		RHS-DU-4	RHS-DU-5	RHS-DU-6	RHS-DU-7	RHS-DU-8	RHS-DU-9	RHS-DU-10
Date extracted	Reporting	02/10/14	02/10/14	02/10/14	02/10/14	02/10/14	02/10/14	02/10/14
Date analyzed	Limits	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14
Moisture, %	(mg/kg)	18%	14%	16%	22%	15%	9%	10%
Pentachlorophenol	1.0*	nd						
Phenanthrene	0.1	nd	nd	nd	nd	0.12	0.13	nd
Anthracene	0.1	nd						
Carbazole	1.0	nd						
Di-n-butylphthalate	1.0	nd						
Fluoranthene	0.1	nd	nd	0.17	0.21	0.43	0.50	0.16
Pyrene	0.1	0.10	nd	0.17	0.23	0.42	0.50	0.18
Butylbenzylphthalate	1.0	nd						
Bis(2-ethylhexyl) adipate	1.0	nd						
Benzo(a)anthracene	0.1	nd	nd	nd	nd	0.11	0.26	nd
Chrysene	0.1	0.12	nd	0.20	0.19	0.34	0.58	0.14
Bis (2-ethylhexyl) phthalate	1.0	nd						
Di-n-octyl phthalate	1.0	nd						
Benzo(b)fluoranthene	0.1	nd	nd	nd	nd	0.12	0.33	nd
Benzo(k)fluoranthene	0.1	nd	nd	nd	nd	0.20	0.35	nd
Benzo(a)pyrene	0.1	nd	nd	nd	nd	nd	0.17	nd
Dibenzo(a,h)anthracene	0.1	nd						
Benzo(ghi)perylene	0.1	nd	nd	nd	nd	nd	0.35	nd
Indeno(1,2,3-cd)pyrene	0.1	nd	nd	nd	nd	nd	0.35	nd
Surrogate recoveries								
2-Fluorophenol		135%	128%	129%	142%	**156%	135%	138%
Phenol-d6		123%	118%	119%	138%	149%	132%	141%
Nitrobenzene-d5		116%	112%	121%	61%	68%	114%	63%
2-Fluorobiphenyl		143%	140%	147%	78%	86%	150%	75%
2,4,6-Tribromophenol		78%	69%	63%	85%	94%	91%	92%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

* - method detection limit

4-Terphenyl-d14

** - The recovery for 2-Fluorophenol exceeded the control limits. No further action taken.

107%

109%

111%

59%

68%

117%

60%

Acceptable Recovery limits:

2-Fluorophenol: 10-135 %

Phenol - d5: 10-135 %

Nitrobenzene - d5: 20-120 %

2-Flurobiphenyl: 50-150% 2,4,6- Tribromophenol: 29-159%

p-Terphenyl-d14: 50-150%

Page 4 of 12

Bureau Veritas BV-RADFORD HIGH SCHOOL PROJECT Client Project #17012-012148.48 ESN Project #D1402050037 Hawaii ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Semivolatile Organic Compounds in Soil by Metho	od 8270
---	---------

Analytical Results	Analysis of S	semivolatile Or	ganic Compou	nds in Soil by N	lethod 8270			
Anarytical Results		RHS-DU-11	RHS-DU-12	RHS-DU-13	RHS-DU-14	RHS-DU-15	RHS-DU-16	RHS-DU-17
Date extracted	Reporting	02/10/14	02/10/14	02/12/14	02/12/14	02/12/14	02/12/14	02/11/14
Date analyzed	Limits	02/11/14	02/11/14	02/13/14	02/13/14	02/13/14	02/13/14	02/11/14
Moisture, %	(mg/kg)	15%	19%	12%	20%	14%	10%	13%
Pyridine	1.0	nd	nd	nd	nd	nd	nd	nd
Aniline	1.0	nd	nd	nd	nd	nd	nd	nd
Phenol	0.41*	nd	nd	nd	nd	nd	nd	nd
2-Chlorophenol	0.36*	nd	nd	nd	nd	nd	nd	nd
Bis (2-chloroethyl) ether	0.40*	nd	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.34*	nd	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.26*	nd	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.38*	nd	nd	nd	nd	nd	nd	nd
Benzyl alcohol	1.0	nd	nd	nd	nd	nd	nd	nd
Hexacholorethane	0.39*	nd	nd	nd	nd	nd	nd	nd
N-Nitroso-di-n-propylamine	1.0	nd	nd	nd	nd	nd	nd	nd
3,4-Methylphenol (m,p-cresol)	1.0	nd	nd	nd	nd	nd	nd	nd
2-Methylphenol (o-cresol)	1.0	nd	nd	nd	nd	nd	nd	nd
Bis (2-chloroisopropyl) ether	0.42*	nd	nd	nd	nd	nd	nd	nd
Nitrobenzene	0.41*	nd	nd	nd	nd	nd	nd	nd
Isophorone	0.41*	nd	nd	nd	nd	nd	nd	nd
2-Nitrophenol	5.0	nd	nd	nd	nd	nd	nd	nd
2,4-Dimethylphenol	1.0	nd	nd	nd	nd	nd	nd	nd
Bis (2-chloroethoxy) methane	1.0	nd	nd	nd	nd	nd	nd	nd
2,4-Dichlorophenol 1,2,4-Trichlorobenzene	0.36*	nd	nd	nd	nd	nd	nd	nd
Naphthalene	0.40* 1.0	nd	nd	nd	nd	nd	nd	nd
4-Chloroaniline	0.46*	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd
Hexachlorobutadiene	0.40*	nd	nd	nd	nd	nd	nd	nd
4-Chloro-3-methylphenol	5.0	nd	nd	nd	nd	nd	nd	nd
2-Methylnapthalene	1.0	nd	nd	nd	nd	nd	nd	nd
1-Methylnapthalene	1.0	nd	nd	nd	nd	nd	nd	nd
Hexachlorocyclopentadiene	1.0	nd	nd	nd	nd	nd	nd	nd
2,4,6-Trichlorophenol	5.0	nd	nd	nd	nd	nd	nd	nd
2,4,5-Trichlorophenol	5.0	nd	nd	nd	nd	nd	nd	nd
2-Chloronaphthalene	1.0	nd	nd	nd	nd	nd	nd	nd
2-Nitroaniline	5.0	nd	nd	nd	nd	nd	nd	nd
1,4-Dinitrobenzene	5.0	nd	nd	nd	nd	nd	nd	nd
Acenaphthylene	0.1	nd	nd	nd	nd	nd	nd	nd
1,3-Dinotrobenzene	0.28*	nd	nd	nd	nd	nd	nd	nd
Dimethylphthalate	1.0	nd	nd	nd	nd	nd	nd	nd
2,6-Dinitrotoluene	1.0	nd	nd	nd	nd	nd	nd	nd
1,2-Dinitrobenzene	1.0	nd	nd	nd	nd	nd	nd	nd
Acenaphthene	0.1	nd	nd	nd	nd	nd	nd	nd
3-Nitroaniline	5.0	nd	nd	nd	nd	nd	nd	nd
2,4-Dinitrophenol	1.0*	nd	nd	nd	nd	nd	nd	nd
2,4-Dinitrotoluene	0.35*	nd	nd	nd	nd	nd	nd	nd
4-Nitrophenol	5.0	nd	nd	nd	nd	nd	nd	nd
Dibenzofuran	1.0	nd	nd	nd	nd	nd	nd	nd
2,3,4,6-Tetrachlorophenol	1.0	nd	nd	nd	nd	nd	nd	nd
2,3,5,6-Tetrachlorophenol	1.0	nd	nd	nd	nd	nd	nd	nd
Fluorene	0.1	nd	nd	nd	nd	nd	nd	nd
4-Chlorophenylphenylether	1.0	nd	nd	nd	nd	nd	nd	nd
Diethylphthalate	1.0	nd	nd	nd	nd	nd	nd	nd
4-Nitroaniline	5.0	nd	nd	nd	nd	nd	nd	nd
4,6-Dinitro-2-methylphenol	5.0	nd	nd	nd	nd	nd	nd	nd
N-nitrosodiphenylamine	1.0	nd	nd	nd	nd	nd	nd	nd
Azobenzene	1.0	nd	nd	nd	nd	nd	nd	nd
4-Bromophenylphenylether Hexachlorobenzene	1.0 0.45*	nd	nd	nd	nd	nd	nd	nd
nexaciiiorobenzene	0.45*	nd	nd	nd	nd	nd	nd	nd

Bureau Veritas **BV-RADFORD HIGH SCHOOL PROJECT** Client Project #17012-012148.48 ESN Project #D1402050037 Hawaii

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Semivolatile Organic	Compounds in Soil by Method 8270
----------------------------------	----------------------------------

·		RHS-DU-11	RHS-DU-12	RHS-DU-13	RHS-DU-14	RHS-DU-15	RHS-DU-16	RHS-DU-17
Date extracted	Reporting	02/10/14	02/10/14	02/12/14	02/12/14	02/12/14	02/12/14	02/11/14
Date analyzed	Limits	02/11/14	02/11/14	02/13/14	02/13/14	02/13/14	02/13/14	02/11/14
Moisture, %	(mg/kg)	15%	19%	12%	20%	14%	10%	13%
Pentachlorophenol	1.0*	nd						
Phenanthrene	0.1	nd						
Anthracene	0.1	nd						
Carbazole	1.0	nd						
Di-n-butylphthalate	1.0	nd						
Fluoranthene	0.1	0.18	0.11	nd	nd	nd	0.10	0.13
Pyrene	0.1	0.23	0.14	nd	nd	nd	0.10	0.17
Butylbenzylphthalate	1.0	nd						
Bis(2-ethylhexyl) adipate	1.0	nd						
Benzo(a)anthracene	0.1	nd						
Chrysene	0.1	0.20	0.13	nd	nd	nd	0.10	0.16
Bis (2-ethylhexyl) phthalate	1.0	nd						
Di-n-octyl phthalate	1.0	nd						
Benzo(b)fluoranthene	0.1	nd						
Benzo(k)fluoranthene	0.1	nd						
Benzo(a)pyrene	0.1	nd						
Dibenzo(a,h)anthracene	0.1	nd						
Benzo(ghi)perylene	0.1	nd						
Indeno(1,2,3-cd)pyrene	0.1	nd						
Surrogate recoveries								
2-Fluorophenol		141%	147%	120%	112%	114%	107%	110%
Phenol-d6		140%	147%	114%	92%	89%	76%	101%
Nitrobenzene-d5		115%	122%	111%	33%	24%	91%	111%
2-Fluorobiphenyl		142%	149%	140%	115%	121%	121%	134%
2,4,6-Tribromophenol		91%	97%	63%	53%	33%	28%	63%
4-Terphenyl-d14		118%	113%	107%	93%	84%	78%	112%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

* - method detection limit

Acceptable Recovery limits: 2-Fluorophenol: 10-135 % Phenol - d5: 10-135 % Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% 2,4,6- Tribromophenol: 29-159% p-Terphenyl-d14: 50-150%

Page 6 of 12

Bureau Veritas BV-RADFORD HIGH SCHOOL PROJECT Client Project #17012-012148.48 ESN Project #D1402050037 Hawaii ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

	1	RHS-DU-17.2	RHS-DU-17.3	RHS-DU-18	RHS-DU-19	RHS-DU-20	RHS-DU-
Date extracted	Reporting	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14
Date analyzed	Limits	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	02/12/14
Moisture, %	(mg/kg)	11%	11%	11%	9%	18%	14%
	1.0						
Pyridine	1.0	nd	nd	nd	nd	nd	nd
Aniline	1.0	nd	nd	nd	nd	nd	nd
Phenol	0.41*	nd	nd	nd	nd	nd	nd
2-Chlorophenol	0.36*	nd	nd	nd	nd	nd	nd
Bis (2-chloroethyl) ether	0.40*	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.34*	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.26*	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.38*	nd	nd	nd	nd	nd	nd
Benzyl alcohol	1.0	nd	nd	nd	nd	nd	nd
Hexacholorethane	0.39*	nd	nd	nd	nd	nd	nd
N-Nitroso-di-n-propylamine	1.0	nd	nd	nd	nd	nd	nd
3,4-Methylphenol (m,p-cresol)	1.0	nd	nd	nd	nd	nd	nd
2-Methylphenol (o-cresol)	1.0	nd	nd	nd	nd	nd	nd
Bis (2-chloroisopropyl) ether	0.42*	nd	nd	nd	nd	nd	nd
Nitrobenzene	0.41*	nd	nd	nd	nd	nd	nd
Isophorone	0.41*	nd	nd	nd	nd	nd	nd
2-Nitrophenol	5.0	nd	nd	nd	nd	nd	nd
2,4-Dimethylphenol	1.0	nd	nd	nd	nd	nd	
							nd
Bis (2-chloroethoxy) methane	1.0	nd	nd	nd	nd	nd	nd
2,4-Dichlorophenol	0.36*	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorobenzene	0.40*	nd	nd	nd	nd	nd	nd
Naphthalene	1.0	nd	nd	nd	nd	nd	nd
4-Chloroaniline	0.46*	nd	nd	nd	nd	nd	nd
Hexachlorobutadiene	0.43*	nd	nd	nd	nd	nd	nd
4-Chloro-3-methylphenol	5.0	nd	nd	nd	nd	nd	nd
2-Methylnapthalene	1.0	nd	nd	nd	nd	nd	nd
I-Methylnapthalene	1.0	nd	nd	nd	nd	nd	nd
Hexachlorocyclopentadiene	1.0	nd	nd	nd	nd	nd	nd
2,4,6-Trichlorophenol	5.0	nd	nd	nd	nd	nd	nd
2,4,5-Trichlorophenol	5.0	nd	nd	nd	nd	nd	nd
2-Chloronaphthalene	1.0	nd	nd	nd	nd	nd	nd
2-Nitroaniline	5.0	nd	nd	nd	nd	nd	nd
1,4-Dinitrobenzene	5.0	nd	nd	nd	nd	nd	nd
Acenaphthylene	0.1	nd	nd	nd	nd	nd	nd
1,3-Dinotrobenzene	0.28*	nd	nd	nd	nd	nd	nd
Dimethylphthalate	1.0	nd	nd	nd	nd	nd	nd
2.6-Dinitrotoluene	1.0	nd	nd	nd	nd	nd	nd
1,2-Dinitrobenzene	1.0	nd	nd	nd	nd	nd	nd
Acenaphthene	0.1	nd	nd	nd			nd
	0.1 5.0				nd	nd	
3-Nitroaniline		nd	nd	nd	nd	nd	nd
2,4-Dinitrophenol	1.0*	nd	nd	nd	nd	nd	nd
2,4-Dinitrotoluene	0.35*	nd	nd	nd	nd	nd	nd
4-Nitrophenol	5.0	nd	nd	nd	nd	nd	nd
Dibenzofuran	1.0	nd	nd	nd	nd	nd	nd
2,3,4,6-Tetrachlorophenol	1.0	nd	nd	nd	nd	nd	nd
2,3,5,6-Tetrachlorophenol	1.0	nd	nd	nd	nd	nd	nd
Fluorene	0.1	nd	nd	nd	nd	nd	nd
-Chlorophenylphenylether	1.0	nd	nd	nd	nd	nd	nd
Diethylphthalate	1.0	nd	nd	nd	nd	nd	nd
4-Nitroaniline	5.0	nd	nd	nd	nd	nd	nd
4,6-Dinitro-2-methylphenol	5.0	nd	nd	nd	nd	nd	nd
N-nitrosodiphenylamine	1.0	nd	nd	nd	nd	nd	nd
Azobenzene	1.0	nd	nd	nd	nd	nd	nd
4-Bromophenylphenylether	1.0	nd	nd	nd	nd	nd	nd
Hexachlorobenzene	0.45*	nd	nd	nd	nd	nd	nd

Analysis of Semivolatile Organic Compounds in Soil by Method 8270

Bureau Veritas **BV-RADFORD HIGH SCHOOL PROJECT** Client Project #17012-012148.48 ESN Project #D1402050037 Hawaii

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analytical Results							
7 marytear Result	1	RHS-DU-17.2	RHS-DU-17.3	RHS-DU-18	RHS-DU-19	RHS-DU-20	RHS-DU-21
Date extracted	Reporting	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14
Date analyzed	Limits	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	02/12/14
Moisture, %	(mg/kg)	11%	11%	11%	9%	18%	14%
	(11/0	11/0	11/0	270	10/0	11/0
Pentachlorophenol	1.0*	nd	nd	nd	nd	nd	nd
Phenanthrene	0.1	nd	0.12	nd	nd	nd	nd
Anthracene	0.1	nd	nd	nd	nd	nd	nd
Carbazole	1.0	nd	nd	nd	nd	nd	nd
Di-n-butylphthalate	1.0	nd	nd	nd	nd	nd	nd
Fluoranthene	0.1	0.11	0.31	0.11	nd	0.22	0.15
Pyrene	0.1	0.14	0.33	0.12	0.12	0.20	0.16
Butylbenzylphthalate	1.0	nd	nd	nd	nd	nd	nd
Bis(2-ethylhexyl) adipate	1.0	nd	nd	nd	nd	nd	nd
Benzo(a)anthracene	0.1	nd	0.18	nd	nd	nd	nd
Chrysene	0.1	0.15	0.46	0.12	0.11	0.15	0.12
Bis (2-ethylhexyl) phthalate	1.0	nd	nd	nd	nd	nd	nd
Di-n-octyl phthalate	1.0	nd	nd	nd	nd	nd	nd
Benzo(b)fluoranthene	0.1	nd	0.40	nd	nd	nd	nd
Benzo(k)fluoranthene	0.1	nd	0.35	nd	nd	nd	nd
Benzo(a)pyrene	0.1	nd	0.43	nd	nd	nd	nd
Dibenzo(a,h)anthracene	0.1	nd	nd	nd	nd	nd	nd
Benzo(ghi)perylene	0.1	nd	0.38	nd	nd	nd	nd
Indeno(1,2,3-cd)pyrene	0.1	nd	0.40	nd	nd	nd	nd
					-		
Surrogate recoveries							
2-Fluorophenol		106%	120%	110%	103%	110%	109%
Phenol-d6		97%	114%	104%	89%	107%	104%
Nitrobenzene-d5		107%	111%	95%	93%	92%	95%
2-Fluorobiphenyl		137%	140%	119%	117%	117%	119%
2,4,6-Tribromophenol		60%	63%	58%	47%	68%	68%
4-Terphenyl-d14		103%	107%	92%	80%	98%	94%

Analysis of Semivolatile Organic Compounds in Soil by Method 8270

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

* - method detection limit

Acceptable Recovery limits: 2-Fluorophenol: 10-135 % Phenol - d5: 10-135 % Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% 2,4,6- Tribromophenol: 29-159% p-Terphenyl-d14: 50-150%

Page 8 of 12

Bureau Veritas **BV-RADFORD HIGH SCHOOL PROJECT** Client Project #17012-012148.48 ESN Project #D1402050037 Hawaii

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analytical Results	Analysis of	Semivolatile Or	ganic Compou	nas in Soil by N	nethoa 8270		
i marytical reosana		RHS-DU-22	RHS-DU-23	RHS-DU-24	RHS-DU-25	RHS-DU-26	RHS-DU-26
Date extracted	Reporting	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14
Date analyzed	Limits	02/12/14	02/12/14	02/12/14	02/12/14	02/12/14	02/12/14
Moisture, %	(mg/kg)	12%	13%	17%	18%	30%	20%
Pyridine	1.0	nd	nd	nd	nd	nd	nd
Aniline	1.0	nd	nd	nd	nd	nd	nd
Phenol	0.41*	nd	nd	nd	nd	nd	nd
2-Chlorophenol	0.36*	nd	nd	nd	nd	nd	nd
Bis (2-chloroethyl) ether	0.40*	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.34*	nd	nd	nd	nd	nd	nd
.4-Dichlorobenzene	0.26*	nd	nd	nd	nd	nd	nd
,2-Dichlorobenzene	0.38*	nd	nd	nd	nd	nd	nd
Benzyl alcohol	1.0	nd	nd	nd	nd	nd	nd
Hexacholorethane	0.39*	nd	nd	nd	nd	nd	nd
N-Nitroso-di-n-propylamine	1.0	nd	nd	nd	nd	nd	nd
3,4-Methylphenol (m,p-cresol)	1.0	nd	nd	nd	nd	nd	nd
2-Methylphenol (o-cresol)	1.0	nd	nd	nd	nd	nd	nd
Bis (2-chloroisopropyl) ether	0.42*	nd	nd	nd	nd	nd	nd
Nitrobenzene	0.41*	nd	nd	nd	nd	nd	nd
Isophorone	0.41*	nd	nd	nd	nd	nd	nd
2-Nitrophenol	5.0	nd	nd	nd	nd	nd	nd
2,4-Dimethylphenol	1.0	nd	nd	nd	nd	nd	nd
Bis (2-chloroethoxy) methane	1.0	nd	nd	nd	nd	nd	nd
2,4-Dichlorophenol	0.36*	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorobenzene	0.40*	nd	nd	nd	nd	nd	nd
Naphthalene	1.0	nd	nd	nd	nd	nd	nd
4-Chloroaniline	0.46*	nd	nd	nd	nd	nd	nd
Hexachlorobutadiene	0.43*	nd	nd	nd	nd	nd	nd
I-Chloro-3-methylphenol	5.0	nd	nd	nd	nd	nd	nd
2-Methylnapthalene	1.0	nd	nd	nd	nd	nd	nd
1-Methylnapthalene	1.0	nd	nd	nd	nd	nd	nd
Hexachlorocyclopentadiene	1.0	nd	nd	nd	nd	nd	nd
2,4,6-Trichlorophenol	5.0	nd	nd	nd	nd	nd	nd
2,4,5-Trichlorophenol	5.0	nd	nd	nd	nd	nd	nd
2-Chloronaphthalene	1.0	nd	nd	nd	nd	nd	nd
2-Nitroaniline	5.0	nd	nd	nd	nd	nd	nd
,4-Dinitrobenzene	5.0	nd	nd	nd	nd	nd	nd
Acenaphthylene	0.1	nd	nd	nd	nd	nd	nd
,3-Dinotrobenzene	0.28*	nd	nd	nd	nd	nd	nd
Dimethylphthalate	1.0	nd	nd	nd	nd	nd	nd
2.6-Dinitrotoluene	1.0	nd	nd	nd	nd	nd	nd
.2-Dinitrobenzene	1.0	nd	nd	nd	nd	nd	nd
Acenaphthene	0.1	nd	nd	nd	nd	nd	nd
3-Nitroaniline	5.0	nd	nd	nd	nd	nd	nd
2,4-Dinitrophenol	1.0*	nd	nd	nd	nd	nd	nd
2,4-Dinitrotoluene	0.35*	nd	nd	nd	nd	nd	nd
-Nitrophenol	5.0	nd	nd	nd	nd	nd	nd
Dibenzofuran	1.0	nd	nd	nd	nd	nd	nd
2,3,4,6-Tetrachlorophenol	1.0	nd	nd	nd	nd	nd	nd
2,3,5,6-Tetrachlorophenol	1.0	nd	nd	nd	nd	nd	nd
Fluorene	0.1	nd	nd	nd	nd	nd	nd
I-Chlorophenylphenylether	1.0	nd	nd	nd	nd	nd	nd
Diethylphthalate	1.0	nd	nd	nd	nd	nd	nd
4-Nitroaniline	5.0	nd	nd	nd	nd	nd	nd
4,6-Dinitro-2-methylphenol	5.0	nd	nd	nd	nd	nd	nd
N-nitrosodiphenylamine	1.0	nd	nd	nd	nd	nd	nd
Azobenzene	1.0	nd	nd	nd	nd	nd	nd

nd

nd

nd

1.0

1.0

0.45*

Azobenzene

4-Bromophenylphenylether

Hexachlorobenzene

nd

nd

nd

Analysis of Samiyalatila Organic Compounds in Sail by Mathad 8270

Page 9 of 12

nd

Bureau Veritas **BV-RADFORD HIGH SCHOOL PROJECT** Client Project #17012-012148.48 ESN Project #D1402050037 Hawaii

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

		RHS-DU-22	RHS-DU-23	RHS-DU-24	RHS-DU-25	RHS-DU-26	RHS-DU-26.2
Date extracted	Reporting	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14
Date analyzed	Limits	02/12/14	02/12/14	02/12/14	02/12/14	02/12/14	02/12/14
Moisture, %	(mg/kg)	12%	13%	17%	18%	30%	20%
Pentachlorophenol	1.0*	nd	nd	nd	nd	nd	nd
Phenanthrene	0.1	0.20	0.16	nd	nd	nd	nd
Anthracene	0.1	nd	nd	nd	nd	nd	nd
Carbazole	1.0	nd	nd	nd	nd	nd	nd
Di-n-butylphthalate	1.0	nd	nd	nd	nd	nd	nd
Fluoranthene	0.1	0.49	0.49	0.13	0.11	nd	nd
Pyrene	0.1	0.41	0.50	0.14	0.11	nd	nd
Butylbenzylphthalate	1.0	nd	nd	nd	nd	nd	nd
Bis(2-ethylhexyl) adipate	1.0	nd	nd	nd	nd	nd	nd
Benzo(a)anthracene	0.1	nd	0.16	nd	nd	nd	nd
Chrysene	0.1	0.40	0.48	0.21	0.11	nd	nd
Bis (2-ethylhexyl) phthalate	1.0	nd	nd	nd	nd	nd	nd
Di-n-octyl phthalate	1.0	nd	nd	nd	nd	nd	nd
Benzo(b)fluoranthene	0.1	nd	0.31	nd	nd	nd	nd
Benzo(k)fluoranthene	0.1	nd	0.33	nd	nd	nd	nd
Benzo(a)pyrene	0.1	nd	0.15	nd	nd	nd	nd
Dibenzo(a,h)anthracene	0.1	nd	nd	nd	nd	nd	nd
Benzo(ghi)perylene	0.1	nd	0.44	nd	nd	nd	nd
Indeno(1,2,3-cd)pyrene	0.1	nd	0.38	nd	nd	nd	nd
Surrogate recoveries							
2-Fluorophenol		105%	103%	108%	112%	112%	111%
Phenol-d6		86%	86%	91%	92%	96%	94%
Nitrobenzene-d5		32%	34%	36%	33%	35%	95%
2-Fluorobiphenyl		115%	118%	116%	115%	119%	116%
2,4,6-Tribromophenol		42%	49%	50%	53%	56%	60%
4-Terphenyl-d14		91%	89%	96%	93%	95%	94%

Analysis of Cominglatile Organic Commons dain Soil by Mathed 8270

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

* - method detection limit

Acceptable Recovery limits: 2-Fluorophenol: 10-135 % Phenol - d5: 10-135 % Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% 2,4,6- Tribromophenol: 29-159% p-Terphenyl-d14: 50-150%

Page 10 of 12

Bureau Veritas BV-RADFORD HIGH SCHOOL PROJECT Client Project #17012-012148.48 ESN Project #D1402050037 Hawaii ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

RPD

24% 20%

	Analysis of S	emivolatile Orga	anic Compound	ls in Soil by Me	thod 8270		
Analytical Results							
		RHS-DU-26.3	RHS-DU-27	RHS-DU-28	RHS-DU-29	MS	MSD
Date extracted	Reporting	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14
Date analyzed	Limits	02/13/14	02/13/14	02/13/14	02/13/14	02/13/14	02/13/14
Moisture, %	(mg/kg)	23%	27%	23%	21%		
Pyridine	1.0	nd	nd	nd	nd		
Aniline	1.0	nd	nd	nd	nd		
Phenol	0.41*	nd	nd	nd	nd	104%	82%
2-Chlorophenol	0.36*	nd	nd	nd	nd	113%	92%
Bis (2-chloroethyl) ether	0.40*	nd	nd	nd	nd		
1,3-Dichlorobenzene	0.34*	nd	nd	nd	nd		
1,4-Dichlorobenzene	0.26*	nd	nd	nd	nd	110%	91%
1,2-Dichlorobenzene	0.38*	nd	nd	nd	nd		
Benzyl alcohol	1.0	nd	nd	nd	nd		
Hexacholorethane	0.39*	nd	nd	nd	nd		
N-Nitroso-di-n-propylamine	1.0	nd	nd	nd	nd	78%	66%

Bis (2-chloroethyl) ether	0.40*	nd	nd	nd	nd			
1,3-Dichlorobenzene	0.34*	nd	nd	nd	nd			
1,4-Dichlorobenzene	0.26*	nd	nd	nd	nd	110%	91%	19%
1,2-Dichlorobenzene	0.38*	nd	nd	nd	nd			
Benzyl alcohol	1.0	nd	nd	nd	nd			
Hexacholorethane	0.39*	nd	nd	nd	nd			
N-Nitroso-di-n-propylamine	1.0	nd	nd	nd	nd	78%	66%	17%
3,4-Methylphenol (m,p-cresol)	1.0	nd	nd	nd	nd			
2-Methylphenol (o-cresol)	1.0	nd	nd	nd	nd			
Bis (2-chloroisopropyl) ether	0.42*	nd	nd	nd	nd			
Nitrobenzene	0.41*	nd	nd	nd	nd			
Isophorone	0.41*	nd	nd	nd	nd			
2-Nitrophenol	5.0	nd	nd	nd	nd			
2,4-Dimethylphenol	1.0	nd	nd	nd	nd			
Bis (2-chloroethoxy) methane	1.0	nd	nd	nd	nd			
2,4-Dichlorophenol	0.36*	nd	nd	nd	nd			
1,2,4-Trichlorobenzene	0.40*	nd	nd	nd	nd	107%	88%	19%
Naphthalene	1.0	nd	nd	nd	nd			
4-Chloroaniline	0.46*	nd	nd	nd	nd			
Hexachlorobutadiene	0.43*	nd	nd	nd	nd			
4-Chloro-3-methylphenol	5.0	nd	nd	nd	nd	89%	76%	16%
2-Methylnapthalene	1.0	nd	nd	nd	nd			
1-Methylnapthalene	1.0	nd	nd	nd	nd			
Hexachlorocyclopentadiene	1.0	nd	nd	nd	nd			
2,4,6-Trichlorophenol	5.0	nd	nd	nd	nd			
2,4,5-Trichlorophenol	5.0	nd	nd	nd	nd			
2-Chloronaphthalene	1.0	nd	nd	nd	nd			
2-Nitroaniline	5.0	nd	nd	nd	nd			
1,4-Dinitrobenzene	5.0	nd	nd	nd	nd			
Acenaphthylene	0.1	nd	nd	nd	nd			
1,3-Dinotrobenzene	0.28*	nd	nd	nd	nd			
Dimethylphthalate	1.0	nd	nd	nd	nd			
2,6-Dinitrotoluene	1.0	nd	nd	nd	nd			
1,2-Dinitrobenzene	1.0	nd	nd	nd	nd			
Acenaphthene	0.1	nd	nd	nd	nd	127%	102%	22%
3-Nitroaniline	5.0	nd	nd	nd	nd			
2,4-Dinitrophenol	1.0*	nd	nd	nd	nd			
2,4-Dinitrotoluene	0.35*	nd	nd	nd	nd	53%	51%	4%
4-Nitrophenol	5.0	nd	nd	nd	nd			
Dibenzofuran	1.0	nd	nd	nd	nd			
2,3,4,6-Tetrachlorophenol	1.0	nd	nd	nd	nd			
2,3,5,6-Tetrachlorophenol	1.0	nd	nd	nd	nd			
Fluorene	0.1	nd	nd	nd	nd			
4-Chlorophenylphenylether	1.0	nd	nd	nd	nd			
Diethylphthalate	1.0	nd	nd	nd	nd			
4-Nitroaniline	5.0	nd	nd	nd	nd			
4,6-Dinitro-2-methylphenol	5.0	nd	nd	nd	nd			
N-nitrosodiphenylamine	1.0	nd	nd	nd	nd			
Azobenzene	1.0	nd	nd	nd	nd			
4-Bromophenylphenylether	1.0	nd	nd	nd	nd			
Hexachlorobenzene	0.45*	nd	nd	nd	nd			

Page 11 of 12

Bureau Veritas **BV-RADFORD HIGH SCHOOL PROJECT** Client Project #17012-012148.48 ESN Project #D1402050037 Hawaii

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Semivolatile	Organic	Compounds in	ı Soil bv	Method 8270

		RHS-DU-26.3	RHS-DU-27	RHS-DU-28	RHS-DU-29	MS	MSD	RPD
Date extracted	Reporting	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	02/11/14	
Date analyzed	Limits	02/13/14	02/13/14	02/13/14	02/13/14	02/13/14	02/13/14	
Moisture, %	(mg/kg)	23%	27%	23%	21%			
Pentachlorophenol	1.0*	nd	nd	nd	nd			
Phenanthrene	0.1	nd	nd	nd	nd			
Anthracene	0.1	nd	nd	nd	nd			
Carbazole	1.0	nd	nd	nd	nd			
Di-n-butylphthalate	1.0	nd	nd	nd	nd			
Fluoranthene	0.1	nd	nd	0.11	0.10			
Pyrene	0.1	nd	nd	0.10	0.10	94%	82%	14%
Butylbenzylphthalate	1.0	nd	nd	nd	nd			
Bis(2-ethylhexyl) adipate	1.0	nd	nd	nd	nd			
Benzo(a)anthracene	0.1	nd	nd	nd	nd			
Chrysene	0.1	nd	nd	0.10	0.14			
Bis (2-ethylhexyl) phthalate	1.0	nd	nd	nd	nd			
Di-n-octyl phthalate	1.0	nd	nd	nd	nd			
Benzo(b)fluoranthene	0.1	nd	nd	nd	nd			
Benzo(k)fluoranthene	0.1	nd	nd	nd	nd			
Benzo(a)pyrene	0.1	nd	nd	nd	nd			
Dibenzo(a,h)anthracene	0.1	nd	nd	nd	nd			
Benzo(ghi)perylene	0.1	nd	nd	nd	nd			
Indeno(1,2,3-cd)pyrene	0.1	nd	nd	nd	nd			
Surrogate recoveries					7			
2-Fluorophenol		109%	108%	110%	106%	104%	103%	
Phenol-d6		87%	88%	86%	89%	97%	98%	
Nitrobenzene-d5		22%	20%	20%	22%	96%	95%	
2-Fluorobiphenyl		114%	110%	117%	112%	109%	107%	
2,4,6-Tribromophenol		39%	42%	39%	43%	42%	46%	
4-Terphenyl-d14		79%	82%	80%	79%	72%	74%	

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

* - method detection limit

Acceptable Recovery limits: 2-Fluorophenol: 10-135 % Phenol - d5: 10-135 % Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% 2,4,6- Tribromophenol: 29-159% p-Terphenyl-d14: 50-150% Acceptable RPD limit: 35%

Page 12 of 12

Bureau Veritas North America, Inc. RADFORD HIGH SCHOOL PROJECT Client Project #17012-012148.48 ESN Project #D1402050037 Hawaii

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Total Metals in Soil by EPA-6020 Series

Sample	Date	Lead (Pb)	Cadmium (Cd)	Chromium (Cr)	Arsenic (As)	Silver (Ag)	Barium (Ba)	Selenium (Se)	Mercury (Hg)
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	2/10/2014	nd	nd	nd	nd	nd	nd	nd	nd
RHS-DU-1	2/11/2014	4800	14**	300*	35**	nd	1200	nd	5.2
RHS-DU-1 Duplicate	2/11/2014	5200	12**	350*	33**	nd	1100	nd	4.9
RHS-DU-1.2	2/11/2014	5800	14**	230*	38**	nd	1100	nd	11
RHS-DU-1.3	2/11/2014	15000	26**	310*	28**	nd	1100	nd	18
RHS-DU-2	2/11/2014	1600	5.9**	150*	11**	nd	550	nd	15
RHS-DU-3	2/12/2014	85	nd	160	6.0	nd	410	nd	5.7
RHS-DU-4	2/12/2014	140	nd	170	7.5	nd	460	nd	3.5
RHS-DU-5	2/10/2014	61	nd	180	6.1	nd	280	nd	2.9
RHS-DU-6	2/10/2014	66	nd	240	7.6	nd	200	nd	3.3
RHS-DU-7	2/10/2014	190	1.0	230	7.3	nd	280	nd	6.1
RHS-DU-8	2/10/2014	260	1.3	170	6.8	nd	320	nd	21
RHS-DU-9	2/12/2014	660	1.6**	110*	8.7**	nd	320	nd	18
RHS-DU-10	2/10/2014	490	1.7	180	12	nd	370	nd	23
RHS-DU-10 Duplicate	2/10/2014	420	2.2	180	11	nd	320	nd	22
RHS-DU-11	2/10/2014	1000	3.7	200	19	nd	522	nd	68
RHS-DU-12	2/10/2014	1300	7.1	210	23	nd	670	nd	57
RHS-DU-13	2/10/2014	2800	6.8	240	19	nd	740	nd	23
RHS-DU-14	2/10/2014	240	nd	220	12	nd	260	nd	8.2
RHS-DU-15	2/10/2014	360	1.4	190	15	nd	270	nd	14
RHS-DU-16	2/10/2014	95	nd	150	5.4	nd	220	nd	5.0
RHS-DU-17	2/12/2014	1100	4.5**	210*	23**	nd	590	nd	73
RHS-DU-17.2	2/10/2014	1600	4.6	220	24	nd	720	nd	66
RHS-DU-17.3	2/12/2014	1600	6.4**	150*	26**	nd	670	nd	83
RHS-DU-18	2/12/2014	6200	11**	170*	26**	nd	710	nd	45
RHS-DU-19	2/12/2014	2300	7.8**	160*	26**	nd	610	nd	45
RHS-DU-20	2/10/2014	120	nd	190	6.4	nd	290	nd	18
RHS-DU-21	2/10/2014	2300	12	240	18	nd	810	nd	20
RHS-DU-22	2/12/2014	110	nd	130	6.9	nd	320	nd	18
RHS-DU-23	2/12/2014	500	1.9	150	18	nd	340	nd	200
RHS-DU-24	2/10/2014	110	nd	140	5.1	nd	270	nd	4.8
RHS-DU-25	2/10/2014	120	nd	190	5.8	nd	280	nd	4.4
RHS-DU-26	2/13/2001	89	nd	250*	5.3	nd	100	nd	3.5
RHS-DU-26.2	2/13/2014	50	nd	220*	nd	nd	69	nd	2.7
RHS-DU-26.3	2/13/2014	78	nd	190*	6.2	nd	85	nd	2.9
RHS-DU-27	2/13/2014	59	nd	230*	6.3	nd	85	nd	2.9
RHS-DU-27 Duplicate	2/13/2014	39	nd	220*	5.5	nd	78	nd	2.8
RHS-DU-28	2/13/2014	44	nd	250*	4.6	nd	91	nd	3.1
RHS-DU-29	2/13/2014	68	nd	270*	5.7	nd	99	nd	5.1
	2/15/2014	00	ind	210	5.7	110	,,	110	
Reporting Limits		5.0	1.0	5.0	5.0	20	50	20	0.5
reporting Linnis		5.0	1.0	5.0	5.0	20	50	20	0.5

nd - not detected at listed reporting limits * The Continuing Calibration standard failed low. The samples were reanalyzed with similar results. ** The Continuing Calibration standard failed high. The samples were reanalyzed with similar results.

QA/QC Data - Total Metals EPA-6020

		Matrix Spik	e	Matrix Spike Duplicate			RPD
	Spiked	Measured	Spike	Spiked	Measured	Spike	
	Conc. (mg/kg)	Conc. (mg/kg)	Recovery (%)	Conc. (mg/kg)	Conc. (mg/kg)	Recovery (%)	(%)
Lead	70.2	67.1	95.6	71.2	77.6	109	13.1
Cadmium	70.2	54.5	77.6M	71.2	58.3	81.9	5.32
Chromium	70.2	109	155M	71.2	101	142M	9.0
Arsenic	70.2	58.3	83.0	71.2	62.6	87.9	5.70
Silver	70.2	45.4	64.7M	71.2	48.9	68.7M	6.01
Barium	70.2	84.9	121M	71.2	108	152M	22.6
Selenium	70.2	52.2	74.4M	71.2	55.0	77.2M	3.81
Mercury	7.02	6.06	86.3	7.12	6.97	97.9	12.6

	Labo	oratory Control	Sample
	Spiked	Measured	Spike
	Conc.	Conc.	Recovery
	(mg/kg)	(mg/kg)	(%)
Lead	100	101	101
Cadmium	100	97.5	97.5
Chromium	100	102	102
Arsenic	100	103	103
Silver	100	85.8	85.8
Barium	100	99.1	99.1
Selenium	100	101	101
Mercury	10	10.6	106

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 80%-120%

ACCEPTABLE RPD IS 35% M - Matrix Spike recovery failed due to matrix interference.

www.pacelabs.com

Report Prepared for:

Karen Carvallo ESN Pacific 2020-B Kahai Street Honolulu HI 96819

REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Prepared Date: March 3, 2014 Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Report Information:

Pace Project #: 10257346 Sample Receipt Date: 02/11/2014 Client Project #: D1402050037 Client Sub PO #: N/A State Cert #: SLD

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

March 04, 2014

Scott Unze, Project Manager (612) 607-6383 (612) 607-6444 (fax) scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report No.....1025 WWW Garrollcox.com 808-782-6627

Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on eighteen samples submitted by a representative of ESN Pacific. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. The reporting limits were based on signal-to-noise measurements.

The results provided in this report include lower-bound, mid-bound, and upper-bound toxic equivalence (TEQ) results. Lower bound TEQ results include only contributions from positive values in the sample. Mid-bound TEQ results include one-half of the reporting limit in cases where an analyte was not detected, along with contributions from positives in the sample. Upper-bound TEQ results include the full reporting limit in cases where an analyte was not detected, along with contributions from positives and the sample.

Second column confirmation analyses of 2,3,7,8-TCDF values obtained from the primary (DB5-MS) column are performed only when specifically requested for a project and only when the values are above the concentration of the lowest calibration standard. Typical resolution for this isomer using the DB5-MS column ranges from 25-30%.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 40-107%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners; the affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Concentrations below the calibration range were flagged "J" and should be regarded as estimates. Concentrations above the calibration range were flagged "E" and should also be regarded as estimates.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show the blanks to contain trace levels of selected congeners. These levels were below the calibration range of the method. The levels reported for the affected congeners in the field samples were higher than the corresponding blank levels by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

Laboratory and matrix spike samples were also prepared with the sample batches using clean sand or sample matrix that had been fortified with native standard materials. The results show that the spiked native compounds in the laboratory spike samples were recovered at 89-128% with relative percent differences (RPDs) of 0.0-7.5%. These results indicate high degrees of accuracy and precision for these determinations. Several recovery values obtained for the native congeners in the matrix spike samples were outside of the 70-130% target range due to the levels of these congeners in the sample material. The RPD values obtained for the matrix spike analyses ranged from 0.2-5.1%. Matrix spikes were not prepared with the 02/24/2014 sample batch.

The responses obtained for selected native and labeled congeners in calibration standard analyses U140226B_20 and P140301A_15 were outside the target ranges. As specified in the method, the averages of the daily response factors for these compounds were used in the calculations for the samples

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

from these runshifts. The affected values were flagged "Y" on the results tables.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10257346_8296 arrollcox.com 808-782-6627

_

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Minnesota	027-053-137
Alabama	40770	Mississippi	MN00064
Alaska	MN00064	Montana	92
Arizona	AZ0014	Nebraska	
Arkansas	88-0680	Nevada	MN_00064_200
California	01155CA	New Jersey (NE	MN002
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 8	8TMS-Q	North Dakota	R-036
Florida (NELAP	E87605	Ohio	4150
Georgia (DNR)	959	Oklahoma	D9922
Guam	959	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN300001-001
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Puerto Rico	MN00064
Indiana	C-MN-01	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
lowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia	9952C
Maryland	322	Wisconsin	999407970
Michigan	9909	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....1025

Appendix A

Sample Management

Report No.....1025 WWW Garrollcox Com/i&08-782-6627

CDRESS20008 Kainel St Monolul, H1 96819 F/X308470917 ESN PRO HONEene@enparitie.com	Soutent - ESN Pacific		ESN PACIFIC'S CHAIN-C	CHAIN-OF-CUSTOUY RECORD	
File File Ease Production continuent Instanta Location Direction neget Annex Continuent Location Direction neget Annex Continuent Direction Direction neget Annex Continuent Direction Direction neget Annex Continuent Direction Direction neget Annex Annex Continuent Direction 1 Tape Direction Direction Direction 2 1330 X Direction Direction Direction 2 1430 X	ADDRESS: 2020-B Kahai	St Honolulu, HI 96819			1OF
Multi-anglementine num Dom from internet in the internet inter	ZPHONE: 8088470067			ESN PROJECT # D1402050037	
Current content Dependence Contentor Data content Data content <td>EMAIL:_esn@esnpacific.cc</td> <td>m</td> <td></td> <td>LOCATION/PROJECT NAME:BV - Ra</td> <td>dford High School</td>	EMAIL:_esn@esnpacific.cc	m		LOCATION/PROJECT NAME:BV - Ra	dford High School
Sample (Fr Sample	CLIENT PROJECT #:		Project Manager: K. Carvallo	COLLECTOR:	
Semetic free Date InterSolut: Semetic free Astronomic InterSolut: Comments Comments FMIS-DU-12 226 5925 X <td< td=""><td>25/340</td><td></td><td>CECS SUBI</td><td></td><td>outsiners</td></td<>	25/340		CECS SUBI		outsiners
Historial Ziel Total		ŀ			
RHS-DU-12 ZIS 933 X N <	LCHS-	1525 s			1035734600/1
RHS-DU-1.3 Z5 [1030] X	2 RHS-DU-1.2	933	×		
4 RHS-DU-2 2.24 1500 X N	RHS-DU-1.3		×		
6 RHS-DU-3 2/4 1403 X X X 7 RHS-DU-4 2/4 1415 X X X 7 RHS-DU-5 2/4 1422 X X X 8 RHS-DU-7 2/4 1131 X X X 9 RHS-DU-7 2/4 1426 X X X 9 RHS-DU-9 2/4 1426 X X X 9 RHS-DU-10 2/5 915 X X X 9 RHS-DU-11 2/6 945 X X X 9 RHS-DU-12 2/6 945 X X X 9 RHS-DU-13 2/6 945 X X X 9 RHS-DU-16 2/4 1345 X X X 9 RHS-DU-16 2/4 <td>24 RHS-DU-2</td> <td></td> <td>×</td> <td></td> <td></td>	24 RHS-DU-2		×		
6 RHS-DU-4 2/4 1/145 X N 7 RHS-DU-5 2/4 1/220 X N N 8 RHS-DU-5 2/4 1/320 X N N N 9 RHS-DU-5 2/4 1/320 X N N N 9 RHS-DU-3 2/4 1/35 X N<	K5 RHS-DU-3		× :		
7 7 RHS-DU-5 2/4 1220 X	6 RHS-DU-4		×		
8 RHS-DU-6 2/4 1402 X	Or RHS-DU-5		×:		
RHS-DU-7 2/4 1131 X N X N <	B [®] RHS-DU-6		×:		
RHS-DU-8 2/4 1424 X X N RHS-DU-10 2/5 915 X X N N RHS-DU-11 2/5 915 X X N N N RHS-DU-11 2/5 945 X X N N N N RHS-DU-12 2/5 945 X X N	ି		×:		
Ø RHS-DU-10 2/4 1455 X X A	RHS-DU-8		×		
RHS-DU-10 2/5 915 X <	RHS-DU-9	-	× :		
ØRHS-DU-11 2/5 900 X X A			× :		
All RHS-DU-12 2/5 945 X X N N B RHS-DU-13 2/5 945 X X N N All RHS-DU-13 2/5 945 X X N			× :		
RHS-DU-13 215 945 × <			× >		
RHS-DU-14 Z/4 12/2 X	De RHS-DU-13		< >		
Retine 2/4 1411 X Last Entry 20 2/4 1411 X Last Entry 20 2/4 1411 Last Entry 20 RELINGUISHED BY (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME 20 RELINQUISHED BY (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME RECEIVED BY (Signature) K. Canallo Via FedEx/ESN NW 2/7/14 1500 QDD PCC Z/W M Q'T TOTAL # OF CONTAINERS 18 (of 35) K. Canallo Via FedEx/ESN NW 2/7/14 1500 QDD PCC Z/W M Q'T TOTAL # OF CONTAINERS 18 (of 35) RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME COC SEALS Y / N / NA RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME SEALS INTACT Y / N / NA	Con RHS-DU-14		< ×		
20 Last Entry 20 REFINEUISHED BY:(Signature) REFINEUISHED BY:(Signature) DATE/TIME REFINEUISHED BY:(Signature) DATE/TIME K. Carvallo via Fedex/ESN NW 2/7/14 K. Carvallo via Fedex/ESN NW 2/7/14 RELINQUISHED BY:(Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME RECEIVED BY:(Signature) DATE/TIME	A RHS-DI1-16		×		
20 20 20 DATE/TIME Received BY (Signature) DATE/TIME AMPLE RECEIPT: LABOF Retine Not in the second in the				intry i i i i	
RELINGUISHED BY: (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME T2.4 SAMPLE RECEIPT: LABOR K. Carvallo via FedEx/ESN NW 2/7/14 1500 COV 2/14 M 907 TOTAL # OF CONTAINERS 18 (of 35) RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME SEALS N/ N/ NA SEALS INTACT Y/ N/ NA SEALS INTACT Y/ N/ NA					
RELINQUISHED BY:(Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME COC SEALS Y / N / NA SEALS INTACT Y / N / NA SEALS INTACT Y / N / NA	REFINAUISHED	DATE/TIME	RECEIVED BY (Signature) DATETIME T-2.4	AINERS	LABORATORY NOTES:
RECEIVED TEMP:			IVED BY (Signature) DATE/TIME	COC SEALS Y / N / NA SEALS INTACT Y / N / NA	Samples MI prepped at ESN Pacific
				RECEIVED TEMP.	

57	Sample Co	Document		t Form	Document Revised: 07Nov2013 Page 1 of 1	
Pace Analytical"		Documer	nt No.:		Issuing Authority:	
	F	-MN-L-21	3-rev.08	CONTRACT OF CONTRACT	Pace Minnesota Quality Office	
pon Receipt Client Name:	fics	[Project #:	MO:	‡:10257346	
Courier: Fed Ex UPS Commercial Pace acking Number: 773 (1375	USPS Other: 3 990		ient US	10257	346	والمراجع وا
stody Seal on Cooler/Box Present?	No	Seals In		Yes No	Optional: Proj. Due Date: Proj. Na	ame:
			Other:			
		ype of Ice:		Biue	None Samples on ice, cooling process	hoch
oler Temp Read (°C): 29 Cooler T	emp Corrected (tion Factor:	'c): <u>Z</u> (Ψ.	» Ві	ological Tissue Frozen? Yes No of Person Examining Contents: CMB 2 Comments:	1
hain of Custody Present?	Ves	No	□n/A	1.	· · · · · · · · · · · · · · · · · · ·	
hain of Custody Filled Out?	Nyes	[]No	□n/A	2.		angle and a later
hain of Custody Relinguished?	Yes	[]No	□n/A	3.		
ampler Name and/or Signature on COC?	[]Yes	No	□n/a	4.		
amples Arrived within Hold Time?	Yes		□n/A	5.		
hort Hold Time Analysis (<72 hr)?	Yes	No	⊡n/A	6.		
Aush Turn Around Time Requested?	Yes	No		7.		
ufficient Volume?	Yes			8.	·	
Correct Containers Used?	Tyes	 No		9.		
-Pace Containers Used?	Ves	N No				
Containers Intact?	Yes			10.		
iltered Volume Received for Dissolved Tests?	Yes	No	N/A	11.		
ample Labels Match COC?	Yes	DN0		12. NO	ciete/time on semples	5.
•	</td <td>Lalino</td> <td></td> <td>12, 190</td> <td></td> <td>></td>	Lalino		12, 190		>
-Includes Date/Time/ID/Analysis Matrix: Il containers needing acid/base preservation have een checked? Noncompliances are noted in 13	1 IYes	ΠNο	QN/A	13.	HNO3 H2SO4 NaOH	
Il containers needing preservation are found to ompliance with EPA recommendation?		ΠNο	N/A	Sample #		
HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>12) Exceptions: VOA, Coliform, TOC, Oil and Grease, WI-DRO (water) DOC	Yes	Dino	and framework and	Initial when	Lot # of added completed: preservative:	
Headspace in VOA Vials (>6mm)?	ΎΩYes	No		14.		
rip Blank Present?	[]Yes	□No	QN/A	15.		
Frip Blank Custody Seals Present?	☐Yes	□No	N/A			
Pace Trip Blank Lot # (if purchased):				L		lan) maganalipendilenid
IENT NOTIFICATION/RESOLUTION					Field Data Required?	
Person Contacted:		anan-rocatali-otrodaka-akadimi	unite de la canada (nemprotector	Date/Time:		ug nagan ji kaya ting kan
Comments/Resolution:	-					
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	1997 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		TTA DIVENTIAN DATA ANNA DATA DATA DATA DATA DATA DA	.a. Carpullar Statements in a Statement of the Carpolic Statement		
	an gala sa manang ang ang ang ang ang ang ang ang an			pagan ngang manamanan pananan menang ban ban ini ini ana dari	Allander bler het weiter en ferste en der	
	antara di mana di kata da kata		ang pangan kanang ka	nata dan baska daga mata ing kang kang bahar da kang da kang kang kang kang kang kang kang kan		

hold, incorrect preservative, out of temp, incorrect containers)

> Tel: 612-607-1700 Fax: 612- 607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257346_8290

Appendix B

Sample Analysis Summary

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8	290 Samp	le Analysis	Results
----------	----------	-------------	---------

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 U144 BAL 10.1 5.2 9.57 U144 U144	g 0224	U140226B_	Matrix Dilution Collected Received 20 Extracted Analyzed	Soil NA 02/04/20' 02/11/20' 02/24/20' 02/27/20'	14 09:07 14 21:00	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	460 13000		0.91 E 0.91 E	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-1	:	2.00 2.00 2.00	88 Y 89 95 Y
2,3,7,8-TCDD Total TCDD	29 1500		0.16 Y 0.16 Y	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD- 1,2,3,4,7,8-HxCDF	3C 13C	2.00 2.00 2.00 2.00	94 Y 96 Y 97
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	360 9100	800 	0.86 0.60 P 0.73	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDE	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00	97 97 99 91 81
1,2,3,7,8-PeCDD Total PeCDD	110 1800		0.46 0.46	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD)-13C)F-13C	2.00 2.00 2.00 2.00	76 73 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	610 750	 540	0.56 0.53 P 0.59	1,2,3,4,6,7,8-HpCI 1,2,3,4,6,7,8-HpCI OCDD-13C		2.00 2.00 4.00	63 70
1,2,3,7,8,9-HxCDF Total HxCDF	100 6100		0.56 0.56 E	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	91 170 130 2200		0.84 0.45 0.40 0.56	2,3,7,8-TCDD-37C	14	0.20	96
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2500 130 3100		0.46 E 0.38 0.42 E	Total 2,3,7,8-TCDI Equivalence: 710 r (Using 2005 WHO	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	840 1700		0.53 0.53				
OCDF OCDD	910 2400		0.35 Y 0.21				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

RL = Reporting Limit.

E = Exceeds calibration range

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257346_82967101100XerC019748085er7682-6627

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	U14022 BAL 10.1 g 5.2 9.57 g U14022	46001-S 26B_14 24 26B_06 & U	140226B_20	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 1 02/11/2014 0 02/24/2014 2 02/27/2014 0	9:07 1:00
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	МВ	UB
2,3,7,8-TCDF	460	0.91	0.10000	46.1804	46.1804	46.1804
Total TCDF	13000	0.91	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	29	0.16	1.00000	29.2299	29.2299	29.2299
Total TCDD	1500	0.16	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	360	0.86	0.03000	10.8854	10.8854	10.8854
2,3,4,7,8-PeCDF	ND	0.60	0.30000	239.3679	239.3679	239.3679
Total PeCDF	9100	0.73	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	110	0.46	1.00000	113.0036	113.0036	113.0036
Total PeCDD	1800	0.46	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	610	0.56	0.10000	61.0951	61.0951	61.0951
1,2,3,6,7,8-HxCDF	ND	0.53	0.10000	54.4034	54.4034	54.4034
2,3,4,6,7,8-HxCDF	750	0.59	0.10000	74.5342	74.5342	74.5342
1,2,3,7,8,9-HxCDF	100	0.56	0.10000	10.1314	10.1314	10.1314
Total HxCDF	6100	0.56	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	91	0.84	0.10000	9.1338	9.1338	9.1338
1,2,3,6,7,8-HxCDD	170	0.45	0.10000	17.2408	17.2408	17.2408
1,2,3,7,8,9-HxCDD	130	0.40	0.10000	13.3970	13.3970	13.3970
Total HxCDD	2200	0.56	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	2500	0.46	0.01000	25.1529	25.1529	25.1529
1,2,3,4,7,8,9-HpCDF	130	0.38	0.01000	1.2781	1.2781	1.2781
Total HpCDF	3100	0.42	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	840	0.53	0.01000	8.4056	8.4056	8.4056
Total HpCDD	1700	0.53	0.00000	0.0000	0.0000	0.0000
OCDF	910	0.35	0.00030	0.2722	0.2722	0.2722
OCDD	2400	0.21	0.00030	0.7093	0.7093	0.7093
				710 ng/Kg	710 ng/Kg	710 ng/Kg

710 ng/Kg Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. Report No.....10257348_829671101100XerCO1914808567682-6627

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290	Sample Analy	ysis Results
-------------	--------------	--------------

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.2 8.5 9.33 P130 P140	g)624	P140301A_1	Matrix Dilution Collected Received 15 Extracted Analyzed	02/11/20 02/26/20	14 09:33 14 09:07 14 21:30 14 10:46	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	630 17000		0.15 E 0.15 E	2,3,7,8-TCDF-130 2,3,7,8-TCDD-130 1,2,3,7,8-PeCDF-	2	2.00 2.00 2.00	73 77 71
2,3,7,8-TCDD Total TCDD	38 1700		0.14 0.14	2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00	69 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	470 970 11000	 	0.43 1.40 0.92	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 2,3,4,6,7,8-HxCDI 1,2,3,7,8,9-HxCDI	=-13C =-13C =-13C	2.00 2.00 2.00 2.00	85 84 81 79
1,2,3,7,8-PeCDD Total PeCDD	120 2000		0.44 0.44	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 1,2,3,4,6,7,8-HpC	D-13C DF-13C	2.00 2.00 2.00	78 67 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	870 740 1000		1.10 1.40 0.82	1,2,3,4,7,8,9-HpC 1,2,3,4,6,7,8-HpC OCDD-13C	DD-13C	2.00 2.00 4.00	71 76 79 Y
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	120 8700		0.82 0.68 1.00 E	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	110 200 150 2700		0.54 0.72 0.83 0.70	2,3,7,8-TCDD-370	CI4	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	3200 100 3900	 	0.66 E 0.81 0.73 E	Total 2,3,7,8-TCD Equivalence: 890 (Using 2005 WHC	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	850 1800		0.22 0.22				
OCDF OCDD	560 1900		0.27 0.23				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

RL = Reporting Limit.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257346_82967101100XerC019748085er7682-6627

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14030 BAL 10.2 g 8.5 9.33 g P13062	246002-S 01A_06 24 28B_19 & P	140301A_15	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/05/2014 0 02/11/2014 0 02/26/2014 2 03/01/2014 1	9:07 1:30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	МВ	UB
2,3,7,8-TCDF	630	0.15	0.10000	63.0003	63.0003	63.0003
Total TCDF	17000	0.15	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	38	0.14	1.00000	38.2979	38.2979	38.2979
Total TCDD	1700	0.14	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	470	0.43	0.03000	14.1460	14.1460	14.1460
2,3,4,7,8-PeCDF	970	1.4	0.30000	290.7745	290.7745	290.7745
Total PeCDF	11000	0.92	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	120	0.44	1.00000	117.8814	117.8814	117.8814
Total PeCDD	2000	0.44	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	870	1.1	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\end{array}$	87.2673	87.2673	87.2673
1,2,3,6,7,8-HxCDF	740	1.4		74.0624	74.0624	74.0624
2,3,4,6,7,8-HxCDF	1000	0.82		101.9369	101.9369	101.9369
1,2,3,7,8,9-HxCDF	120	0.68		12.1000	12.1000	12.1000
Total HxCDF	8700	1.0		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	110	0.54	0.10000	10.6051	10.6051	10.6051
1,2,3,6,7,8-HxCDD	200	0.72	0.10000	19.9110	19.9110	19.9110
1,2,3,7,8,9-HxCDD	150	0.83	0.10000	15.4994	15.4994	15.4994
Total HxCDD	2700	0.70	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	3200	0.66	0.01000	32.3356	32.3356	32.3356
1,2,3,4,7,8,9-HpCDF	100	0.81	0.01000	1.0486	1.0486	1.0486
Total HpCDF	3900	0.73	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	850	0.22	0.01000	8.4969	8.4969	8.4969
Total HpCDD	1800	0.22	0.00000	0.0000	0.0000	0.0000
OCDF	560	0.27	0.00030	0.1688	0.1688	0.1688
OCDD	1900	0.23	0.00030	0.5720	0.5720	0.5720
				890 ng/Kg	890 ng/Kg	890 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method	8290	Sample	Analy	/sis	Results
--------	------	--------	-------	------	---------

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1028 P144 BAL 10.4 9.6 9.40 P130 P144	g g 0624	P140228B_	Matrix Dilution Collected Received 19 Extracted Analyzed	02/11/20 02/26/20	14 10:30 14 09:07 14 21:30 14 19:47	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 57000	2700	0.40 PE 0.40 E	2,3,7,8-TCDF-130 2,3,7,8-TCDD-130 1,2,3,7,8-PeCDF-	2	2.00 2.00 2.00	67 75 68
2,3,7,8-TCDD Total TCDD	140 5700		0.66 0.66 E	2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD- 1,2,3,4,7,8-HxCDF	13C 13C	2.00 2.00 2.00 2.00	66 72 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1700 3800 38000	 	0.75 2.80 E 1.80 E	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	=-13C =-13C =-13C	2.00 2.00 2.00 2.00 2.00	77 75 73 71
1,2,3,7,8-PeCDD Total PeCDD	340 5500		1.10 1.10	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 1,2,3,4,6,7,8-HpC 1,2,3,4,7,8,9-HpC	D-13C DF-13C	2.00 2.00 2.00 2.00	65 73 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2300 2000 2600		1.10 E 2.60 1.80 E	1,2,3,4,6,7,8-HpC 0CDD-13C		2.00 2.00 4.00	77 58
1,2,3,7,8,9-HxCDF Total HxCDF	310 23000		2.00 1.90 E	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	260 410 370 6200		1.40 1.50 1.50 1.50 E	2,3,7,8-TCDD-370	CI4	0.20	80
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	7700 270 9400		1.20 E 1.60 1.40 E	Total 2,3,7,8-TCD Equivalence: 2900 (Using 2005 WHC) ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	2100 4600		0.50 E 0.50 E				
OCDF OCDD	1500 5100		0.52 0.42 E				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit.

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14022 BAL 10.4 g 9.6 9.40 g P13062	46003-S 28B_04 28B_04 28B_01 & P	140228B_19	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/05/2014 1 02/11/2014 0 02/26/2014 2 02/28/2014 1)9:07 21:30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	ND	0.40	0.10000	266.4271	266.4271	266.4271
Total TCDF	57000	0.40	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	140	0.66	1.00000	140.4906	140.4906	140.4906
Total TCDD	5700	0.66	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	1700	0.75	0.03000	51.8696	51.8696	51.8696
2,3,4,7,8-PeCDF	3800	2.8	0.30000	1150.0767	1150.0767	1150.0767
Total PeCDF	38000	1.8	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	340	1.1	1.00000	344.9645	344.9645	344.9645
Total PeCDD	5500	1.1	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	2300	1.1	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\\ \end{array}$	225.4365	225.4365	225.4365
1,2,3,6,7,8-HxCDF	2000	2.6		196.5160	196.5160	196.5160
2,3,4,6,7,8-HxCDF	2600	1.8		264.4692	264.4692	264.4692
1,2,3,7,8,9-HxCDF	310	2.0		30.7299	30.7299	30.7299
Total HxCDF	23000	1.9		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	260	1.4	0.10000	25.8999	25.8999	25.8999
1,2,3,6,7,8-HxCDD	410	1.5	0.10000	41.2923	41.2923	41.2923
1,2,3,7,8,9-HxCDD	370	1.5	0.10000	36.6176	36.6176	36.6176
Total HxCDD	6200	1.5	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	7700	1.2	0.01000	77.4586	77.4586	77.4586
1,2,3,4,7,8,9-HpCDF	270	1.6	0.01000	2.7123	2.7123	2.7123
Total HpCDF	9400	1.4	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	2100	0.50	0.01000	21.3697	21.3697	21.3697
Total HpCDD	4600	0.50	0.00000	0.0000	0.0000	0.0000
OCDF	1500	0.52	0.00030	0.4615	0.4615	0.4615
OCDD	5100	0.42	0.00030	1.5290	1.5290	1.5290
				2900 ng/Kg	2900 ng/Kg	2900 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8	290 Samp	le Analysis	Results
----------	----------	-------------	---------

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.5 9.2 9.53 P130 P140	g g 0624	k P140228B_	Matrix Dilution Collected Received 19 Extracted Analyzed	02/11/20 02/26/20	14 15:00 14 09:07 14 21:30 14 20:30	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	230 5800		1.20 1.20 E	2,3,7,8-TCDF-130 2,3,7,8-TCDD-130 1,2,3,7,8-PeCDF-	2	2.00 2.00 2.00	71 80 68
2,3,7,8-TCDD Total TCDD	16 480		0.70 0.70	2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD- 1,2,3,4,7,8-HxCDF	13C 13C	2.00 2.00 2.00 2.00	66 71 84
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	170 330 3600	 	3.30 3.10 3.20	1,2,3,6,7,8-HxCDI 2,3,4,6,7,8-HxCDI 1,2,3,7,8,9-HxCDI 1,2,3,4,7,8-HxCDI	=-13C =-13C =-13C	2.00 2.00 2.00 2.00 2.00	84 79 73 82
1,2,3,7,8-PeCDD Total PeCDD	43 540		1.40 1.40	1,2,3,6,7,8-HxCDI 1,2,3,4,6,7,8-HxCDI 1,2,3,4,6,7,8-HpC 1,2,3,4,7,8,9-HpC	D-13C DF-13C	2.00 2.00 2.00 2.00	67 70 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	220 210 270		2.70 1.50 1.70	1,2,3,4,6,7,8-HpC 1,2,3,4,6,7,8-HpC OCDD-13C		2.00 2.00 4.00	72 52
1,2,3,7,8,9-HxCDF Total HxCDF	270 44 2400		2.70 2.20 E	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	34 68 53 820		0.98 1.10 0.90 0.98	2,3,7,8-TCDD-370	C14	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	710 39 1000		0.96 1.60 1.30	Total 2,3,7,8-TCD Equivalence: 290 (Using 2005 WHC	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	590 1200		2.40 2.40				
OCDF OCDD	330 3700		2.30 4.50				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14022 BAL 10.5 g 9.2 9.53 g P13062	46004-S 28B_05 24 28B_01 & P	140228B_19	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 1 02/11/2014 0 02/26/2014 2 02/28/2014 2	9:07 1:30	
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB	
2,3,7,8-TCDF	230	1.2	0.10000	22.7176	22.7176	22.7176	_
Total TCDF	5800	1.2	0.00000	0.0000	0.0000	0.0000	
2,3,7,8-TCDD	16	0.70	1.00000	16.4296	16.4296	16.4296	
Total TCDD	480	0.70	0.00000	0.0000	0.0000	0.0000	
1,2,3,7,8-PeCDF	170	3.3	0.03000	5.1067	5.1067	5.1067	
2,3,4,7,8-PeCDF	330	3.1	0.30000	97.9930	97.9930	97.9930	
Total PeCDF	3600	3.2	0.00000	0.0000	0.0000	0.0000	
1,2,3,7,8-PeCDD	43	1.4	1.00000	42.7471	42.7471	42.7471	
Total PeCDD	540	1.4	0.00000	0.0000	0.0000	0.0000	
1,2,3,4,7,8-HxCDF	220	2.7	0.10000	21.9228	21.9228	21.9228	
1,2,3,6,7,8-HxCDF	210	1.5	0.10000	20.8312	20.8312	20.8312	
2,3,4,6,7,8-HxCDF	270	1.7	0.10000	27.3254	27.3254	27.3254	
1,2,3,7,8,9-HxCDF	44	2.7	0.10000	4.4244	4.4244	4.4244	
Total HxCDF	2400	2.2	0.00000	0.0000	0.0000	0.0000	
1,2,3,4,7,8-HxCDD	34	0.98	0.10000	3.3965	3.3965	3.3965	
1,2,3,6,7,8-HxCDD	68	1.1	0.10000	6.7560	6.7560	6.7560	
1,2,3,7,8,9-HxCDD	53	0.90	0.10000	5.3329	5.3329	5.3329	
Total HxCDD	820	0.98	0.00000	0.0000	0.0000	0.0000	
1,2,3,4,6,7,8-HpCDF	710	0.96	0.01000	7.1142	7.1142	7.1142	
1,2,3,4,7,8,9-HpCDF	39	1.6	0.01000	0.3860	0.3860	0.3860	
Total HpCDF	1000	1.3	0.00000	0.0000	0.0000	0.0000	
1,2,3,4,6,7,8-HpCDD	590	2.4	0.01000	5.8672	5.8672	5.8672	
Total HpCDD	1200	2.4	0.00000	0.0000	0.0000	0.0000	
OCDF	330	2.3	0.00030	0.0998	0.0998	0.0998	
OCDD	3700	4.5	0.00030	1.1246	1.1246	1.1246	
				290 ng/Kg	290 ng/Kg	290 ng/Kg	

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method	8290	Sample	Analy	/sis	Results
--------	------	--------	-------	------	---------

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.3 10.8 9.19 P130 P140	g)624	P140228B_	Matrix Dilution Collected Received 19 Extracted Analyzed	02/11/20 02/26/20	014 14:03 014 09:07 014 21:30 014 21:13	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	7.90 180.00		1.10 1.10	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	;	2.00 2.00	75 83
2,3,7,8-TCDD Total TCDD	0.75 15.00		0.63 J 0.63	1,2,3,7,8-PeCDF- 2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00 2.00	70 68 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	7.60 21.00 230.00	 	0.87 0.80 0.83	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	-13C -13C -13C	2.00 2.00 2.00 2.00	87 84 82 75
1,2,3,7,8-PeCDD Total PeCDD	2.50 22.00		0.90 J 0.90	1,2,3,4,7,8-HxCDE 1,2,3,6,7,8-HxCDE 1,2,3,4,6,7,8-HpCI	D-13C DF-13C	2.00 2.00 2.00	83 72 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	15.00	26	0.80 0.71 P	1,2,3,4,7,8,9-HpCl 1,2,3,4,6,7,8-HpCl OCDD-13C		2.00 2.00 4.00	69 73 54
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	20.00 3.20 240.00		0.75 0.99 J 0.82	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	4.90 12.00 7.80 110.00		0.91 J 1.00 0.94 0.96	2,3,7,8-TCDD-37C	214	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	110.00 5.70 310.00	 	0.83 1.10 0.98	Total 2,3,7,8-TCD Equivalence: 25 no (Using 2005 WHO	g/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	290.00 570.00		1.70 1.70				
OCDF OCDD	250.00 4100.00		0.89 1.20				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14022 BAL 10.3 g 10.8 9.19 g P13062 P14022	346005-S 28B_06 24	140228B_19	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 14 02/11/2014 09 02/26/2014 21 02/28/2014 21):07 :30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	7.90	1.1	0.10000	0.7872	0.7872	0.7872
Total TCDF	180.00	1.1	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	0.75	0.63	1.00000	0.7474	0.7474	0.7474
Total TCDD	15.00	0.63	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	7.60	0.87	0.03000	0.2293	0.2293	0.2293
2,3,4,7,8-PeCDF	21.00	0.80	0.30000	6.2023	6.2023	6.2023
Total PeCDF	230.00	0.83	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	2.50	0.90	1.00000	2.4729	2.4729	2.4729
Total PeCDD	22.00	0.90	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	15.00	0.80	0.10000	1.4750	1.4750	1.4750
1,2,3,6,7,8-HxCDF	ND	0.71	0.10000	2.6405	2.6405	2.6405
2,3,4,6,7,8-HxCDF	20.00	0.75	0.10000	1.9850	1.9850	1.9850
1,2,3,7,8,9-HxCDF	3.20	0.99	0.10000	0.3170	0.3170	0.3170
Total HxCDF	240.00	0.82	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	4.90	0.91	0.10000	0.4950	0.4950	0.4950
1,2,3,6,7,8-HxCDD	12.00	1.0	0.10000	1.2189	1.2189	1.2189
1,2,3,7,8,9-HxCDD	7.80	0.94	0.10000	0.7800	0.7800	0.7800
Total HxCDD	110.00	0.96	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	110.00	0.83	0.01000	1.1335	1.1335	1.1335
1,2,3,4,7,8,9-HpCDF	5.70	1.1	0.01000	0.0565	0.0565	0.0565
Total HpCDF	310.00	0.98	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	290.00	1.7	0.01000	2.8638	2.8638	2.8638
Total HpCDD	570.00	1.7	0.00000	0.0000	0.0000	0.0000
OCDF	250.00	0.89	0.00030	0.0764	0.0764	0.0764
OCDD	4100.00	1.2	0.00030	1.2196	1.2196	1.2196
				25 ng/Kg	25 ng/Kg	25 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257340_82

> Tel: 612-607-1700 Fax: 612- 607-6444

Method	8290	Sample	Analy	/sis	Results
--------	------	--------	-------	------	---------

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.4 16.0 8.74 P130 P140	g)624	\$ & P140228B_	Matrix Dilution Collected Received 19 Extracted Analyzed	02/11/20 02/26/20	14 11:45 14 09:07 14 21:30 14 21:56	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	16.00 410.00		0.15 0.15	2,3,7,8-TCDF-130 2,3,7,8-TCDD-130	2	2.00 2.00	70 78
2,3,7,8-TCDD Total TCDD	0.99 37.00		0.19 J 0.19	1,2,3,7,8-PeCDF- 2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00 2.00	66 64 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	13.00 26.00 310.00	 	0.45 0.33 0.39	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 2,3,4,6,7,8-HxCDI 1,2,3,7,8,9-HxCDI	=-13C =-13C =-13C	2.00 2.00 2.00 2.00	81 80 76 67
1,2,3,7,8-PeCDD Total PeCDD	4.30 57.00		0.46 J 0.46	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 1,2,3,4,6,7,8-HpC	D-13C DF-13C	2.00 2.00 2.00	76 67 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	22.00 20.00 29.00		0.25 0.21 0.22	1,2,3,4,7,8,9-HpC 1,2,3,4,6,7,8-HpC OCDD-13C		2.00 2.00 4.00	66 71 54
1,2,3,7,8,9-HxCDF Total HxCDF	3.90 310.00		0.28 J 0.24	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.40 31.00 17.00 240.00		0.28 J 0.28 0.24 0.27	2,3,7,8-TCDD-370	CI4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	170.00 7.50 370.00	 	0.26 0.35 0.31	Total 2,3,7,8-TCD Equivalence: 35 n (Using 2005 WHC	g/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	360.00 700.00		0.83 0.83				
OCDF OCDD	310.00 3400.00		0.54 1.70				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14022 BAL 10.4 g 16.0 8.74 g P13062 P14022	246006-S 28B_07 24	140228B_19	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 11 02/11/2014 09 02/26/2014 21 02/28/2014 21):07 :30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	16.00	0.15	0.10000	1.6233	1.6233	1.6233
Total TCDF	410.00	0.15	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	0.99	0.19	1.00000	0.9907	0.9907	0.9907
Total TCDD	37.00	0.19	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	13.00	0.45	0.03000	0.3785	0.3785	0.3785
2,3,4,7,8-PeCDF	26.00	0.33	0.30000	7.9467	7.9467	7.9467
Total PeCDF	310.00	0.39	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	4.30	0.46	1.00000	4.3193	4.3193	4.3193
Total PeCDD	57.00	0.46	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	22.00	0.25	0.10000	2.2258	2.2258	2.2258
1,2,3,6,7,8-HxCDF	20.00	0.21	0.10000	2.0104	2.0104	2.0104
2,3,4,6,7,8-HxCDF	29.00	0.22	0.10000	2.8826	2.8826	2.8826
1,2,3,7,8,9-HxCDF	3.90	0.28	0.10000	0.3949	0.3949	0.3949
Total HxCDF	310.00	0.24	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	5.40	0.28	0.10000	0.5421	0.5421	0.5421
1,2,3,6,7,8-HxCDD	31.00	0.28	0.10000	3.1137	3.1137	3.1137
1,2,3,7,8,9-HxCDD	17.00	0.24	0.10000	1.7111	1.7111	1.7111
Total HxCDD	240.00	0.27	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	170.00	0.26	0.01000	1.6818	1.6818	1.6818
1,2,3,4,7,8,9-HpCDF	7.50	0.35	0.01000	0.0753	0.0753	0.0753
Total HpCDF	370.00	0.31	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	360.00	0.83	0.01000	3.5904	3.5904	3.5904
Total HpCDD	700.00	0.83	0.00000	0.0000	0.0000	0.0000
OCDF	310.00	0.54	0.00030	0.0922	0.0922	0.0922
OCDD	3400.00	1.7	0.00030	1.0149	1.0149	1.0149
				35 ng/Kg	35 ng/Kg	35 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8	290 Samp	le Analysis	Results
----------	----------	-------------	---------

Client - ESN Pacific

0 D. . .

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.3 13.3 8.93 P130 P140	g g 0624	• P140228B_	Matrix Dilution Collected Received 19 Extracted Analyzed	02/11/20 02/26/20	14 12:20 14 09:07 14 21:30 14 22:38	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	10.00 210.00		0.11 0.11	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-1	;	2.00 2.00 2.00	75 83 72
2,3,7,8-TCDD Total TCDD	0.78 24.00		0.15 J 0.15	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD- 1,2,3,4,7,8-HxCDF	13C 13C	2.00 2.00 2.00 2.00	69 75 88
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	10.00 22.00 250.00	 	0.18 0.19 0.18	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDE	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00	87 81 65 82
1,2,3,7,8-PeCDD Total PeCDD	4.10 51.00		0.14 J 0.14	1,2,3,6,7,8-HxCDE 1,2,3,4,6,7,8-HpCE 1,2,3,4,7,8,9-HpCE	D-13C DF-13C	2.00 2.00 2.00	67 71 68
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	22.00 25.00 29.00		0.29 0.26 0.24	1,2,3,4,6,7,8-HpCI OCDD-13C		2.00 4.00	72 54
1,2,3,7,8,9-HxCDF Total HxCDF	3.80 350.00		0.24 0.37 J 0.29	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	6.50 22.00 14.00 190.00		0.26 0.28 0.22 0.25	2,3,7,8-TCDD-37C	314	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	210.00 8.90 510.00		0.26 0.33 0.29	Total 2,3,7,8-TCDI Equivalence: 33 no (Using 2005 WHO	g/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	460.00 890.00		0.77 0.77				
OCDF OCDD	430.00 4200.00		0.32 0.27				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14022 BAL 10.3 g 13.3 8.93 g P13062 P14022	246007-S 28B_08 24	140228B_19	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 12 02/11/2014 09 02/26/2014 21 02/28/2014 22):07 :30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	10.00	0.11	0.10000	1.0134	1.0134	1.0134
Total TCDF	210.00	0.11	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	0.78	0.15	1.00000	0.7805	0.7805	0.7805
Total TCDD	24.00	0.15	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	10.00	0.18	0.03000	0.3104	0.3104	0.3104
2,3,4,7,8-PeCDF	22.00	0.19	0.30000	6.6764	6.6764	6.6764
Total PeCDF	250.00	0.18	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	4.10	0.14	1.00000	4.0811	4.0811	4.0811
Total PeCDD	51.00	0.14	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	22.00	0.29	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\end{array}$	2.1995	2.1995	2.1995
1,2,3,6,7,8-HxCDF	25.00	0.26		2.5369	2.5369	2.5369
2,3,4,6,7,8-HxCDF	29.00	0.24		2.9204	2.9204	2.9204
1,2,3,7,8,9-HxCDF	3.80	0.37		0.3819	0.3819	0.3819
Total HxCDF	350.00	0.29		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	6.50	0.26	0.10000	0.6510	0.6510	0.6510
1,2,3,6,7,8-HxCDD	22.00	0.28	0.10000	2.1999	2.1999	2.1999
1,2,3,7,8,9-HxCDD	14.00	0.22	0.10000	1.3581	1.3581	1.3581
Total HxCDD	190.00	0.25	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	210.00	0.26	0.01000	2.0881	2.0881	2.0881
1,2,3,4,7,8,9-HpCDF	8.90	0.33	0.01000	0.0887	0.0887	0.0887
Total HpCDF	510.00	0.29	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	460.00	0.77	0.01000	4.5638	4.5638	4.5638
Total HpCDD	890.00	0.77	0.00000	0.0000	0.0000	0.0000
OCDF	430.00	0.32	0.00030	0.1277	0.1277	0.1277
OCDD	4200.00	0.27	0.00030	1.2722	1.2722	1.2722
				33 ng/Kg	33 ng/Kg	33 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8	290 Samp	le Analysis	Results
----------	----------	-------------	---------

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 U144 BAL 10.1 14.3 8.66 U144 U144	g 0224	S & U140226B_	Matrix Dilution Collected Received 20 Extracted Analyzed	02/11/20	14 14:02 14 09:07 14 21:00 14 04:27	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	22.0 600.0		0.560 0.560	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	>	2.00 2.00 2.00	82 Y 88 89 Y
2,3,7,8-TCDD Total TCDD	1.4 55.0		0.098 Y 0.098 Y	1,2,3,7,8-PeCDF-1 2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00	86 Y 87 Y
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	22.0 46.0 570.0	 	0.270 0.230 0.250	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	13C 13C 13C	2.00 2.00 2.00 2.00	100 103 97 91
1,2,3,7,8-PeCDD Total PeCDD	9.3 120.0		0.240 0.240	1,2,3,4,7,8-HxCDE 1,2,3,6,7,8-HxCDE 1,2,3,4,6,7,8-HpCI	D-13C DF-13C	2.00 2.00 2.00	81 75 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	42.0	 43	0.280 0.200 P	1,2,3,4,7,8,9-HpCI 1,2,3,4,6,7,8-HpCI OCDD-13C		2.00 2.00 4.00	60 59 67
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	56.0 8.8 500.0		0.240 0.440 0.290	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDE		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	13.0 42.0 27.0 390.0		0.460 0.580 0.600 0.550	2,3,7,8-TCDD-37C	214	0.20	96
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	240.0 16.0 630.0		0.200 0.400 0.300	Total 2,3,7,8-TCD Equivalence: 63 no (Using 2005 WHO	g/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	740.0 1400.0		0.140 0.140				
OCDF OCDD	570.0 6400.0		0.460 Y 0.440				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

RL = Reporting Limit.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

CDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	U1402 BAL 10.1 g 14.3 8.66 g U1402 U1402	346008-S 26B_15 24	140226B_20	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 14 02/11/2014 09 02/24/2014 21 02/27/2014 04):07 :00
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	22.0	0.56	0.10000	2.2016	2.2016	2.2016
Total TCDF	600.0	0.56	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	1.4	0.098	1.00000	1.4168	1.4168	1.4168
Total TCDD	55.0	0.098	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	22.0	0.27	0.03000	0.6533	0.6533	0.6533
2,3,4,7,8-PeCDF	46.0	0.23	0.30000	13.8748	13.8748	13.8748
Total PeCDF	570.0	0.25	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	9.3	0.24	1.00000	9.3190	9.3190	9.3190
Total PeCDD	120.0	0.24	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	42.0	0.28	$0.10000 \\ 0.10000 \\ 0.10000 \\ 0.10000 \\ 0.00000 $	4.1906	4.1906	4.1906
1,2,3,6,7,8-HxCDF	ND	0.20		4.2820	4.2820	4.2820
2,3,4,6,7,8-HxCDF	56.0	0.24		5.5569	5.5569	5.5569
1,2,3,7,8,9-HxCDF	8.8	0.44		0.8820	0.8820	0.8820
Total HxCDF	500.0	0.29		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	13.0	0.46	0.10000	1.2841	1.2841	1.2841
1,2,3,6,7,8-HxCDD	42.0	0.58	0.10000	4.2335	4.2335	4.2335
1,2,3,7,8,9-HxCDD	27.0	0.60	0.10000	2.6887	2.6887	2.6887
Total HxCDD	390.0	0.55	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	240.0	0.20	0.01000	2.4353	2.4353	2.4353
1,2,3,4,7,8,9-HpCDF	16.0	0.40	0.01000	0.1649	0.1649	0.1649
Total HpCDF	630.0	0.30	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	740.0	0.14	0.01000	7.4428	7.4428	7.4428
Total HpCDD	1400.0	0.14	0.00000	0.0000	0.0000	0.0000
OCDF	570.0	0.46	0.00030	0.1702	0.1702	0.1702
OCDD	6400.0	0.44	0.00030	1.9249	1.9249	1.9249
				63 ng/Kg	63 ng/Kg	63 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.2 9.16 P130 P140	g)624	\$ & P140228B_	Matrix Dilution Collected Received _19 Extracted Analyzed	02/11/20 02/26/20	014 11:31 014 09:07 014 21:30 014 23:21	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	42.0 1100.0		0.17 0.17	2,3,7,8-TCDF-130 2,3,7,8-TCDD-130 1,2,3,7,8-PeCDF-	С	2.00 2.00 2.00	72 80 70
2,3,7,8-TCDD Total TCDD	2.6 100.0		0.21 0.21	2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD- 1,2,3,4,7,8-PeCDD- 1,2,3,4,7,8-HxCD	-13C -13C	2.00 2.00 2.00 2.00	67 72 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	46.0 98.0 1100.0	 	0.26 0.55 0.40	1,2,3,4,7,8-HxCD 1,2,3,6,7,8-HxCD 2,3,4,6,7,8-HxCD 1,2,3,7,8,9-HxCD 1,2,3,4,7,8-HxCD	F-13C F-13C F-13C	2.00 2.00 2.00 2.00 2.00	83 81 78 49 80
1,2,3,7,8-PeCDD Total PeCDD	15.0 200.0		0.25 0.25	1,2,3,4,7,8-HXCD 1,2,3,6,7,8-HxCD 1,2,3,4,6,7,8-HpC 1,2,3,4,7,8,9-HpC	D-13C DF-13C	2.00 2.00 2.00 2.00	64 68 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	100.0 88.0 130.0		0.50 0.54 0.46	1,2,3,4,6,7,8-HpC 0CDD-13C		2.00 2.00 4.00	05 71 55
1,2,3,7,8,9-HxCDF Total HxCDF	18.0 1300.0		0.47 0.49	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCD		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	19.0 55.0 36.0 600.0		0.44 0.47 0.45 0.45	2,3,7,8-TCDD-37	Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	600.0 25.0 1000.0	 	0.42 0.45 0.43	Total 2,3,7,8-TCD Equivalence: 110 (Using 2005 WHC	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	800.0 1700.0		0.96 0.96				
OCDF OCDD	570.0 6300.0		0.46 2.10				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14022 BAL 10.2 g 10.2 9.16 g P13062	46009-S 28B_09 24 28B_01 & P	140228B_19	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 1 02/11/2014 0 02/26/2014 2 02/28/2014 2	9:07 1:30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	МВ	UB
2,3,7,8-TCDF	42.0	0.17	0.10000	4.2120	4.2120	4.2120
Total TCDF	1100.0	0.17	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	2.6	0.21	1.00000	2.5779	2.5779	2.5779
Total TCDD	100.0	0.21	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	46.0	0.26	0.03000	1.3924	1.3924	1.3924
2,3,4,7,8-PeCDF	98.0	0.55	0.30000	29.4800	29.4800	29.4800
Total PeCDF	1100.0	0.40	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	15.0	0.25	1.00000	14.6872	14.6872	14.6872
Total PeCDD	200.0	0.25	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	100.0	0.50	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\\ \end{array}$	10.2795	10.2795	10.2795
1,2,3,6,7,8-HxCDF	88.0	0.54		8.7543	8.7543	8.7543
2,3,4,6,7,8-HxCDF	130.0	0.46		13.1480	13.1480	13.1480
1,2,3,7,8,9-HxCDF	18.0	0.47		1.8134	1.8134	1.8134
Total HxCDF	1300.0	0.49		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	19.0	0.44	0.10000	1.9415	1.9415	1.9415
1,2,3,6,7,8-HxCDD	55.0	0.47	0.10000	5.5172	5.5172	5.5172
1,2,3,7,8,9-HxCDD	36.0	0.45	0.10000	3.5872	3.5872	3.5872
Total HxCDD	600.0	0.45	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	600.0	0.42	0.01000	6.0332	6.0332	6.0332
1,2,3,4,7,8,9-HpCDF	25.0	0.45	0.01000	0.2528	0.2528	0.2528
Total HpCDF	1000.0	0.43	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	800.0	0.96	0.01000	8.0212	8.0212	8.0212
Total HpCDD	1700.0	0.96	0.00000	0.0000	0.0000	0.0000
OCDF	570.0	0.46	0.00030	0.1720	0.1720	0.1720
OCDD	6300.0	2.1	0.00030	1.8777	1.8777	1.8777
				110 na/Ka	110 na/Ka	110 pg/Kg

110 ng/Kg 110 ng/Kg 110 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8	290 Samp	le Analysis	Results
----------	----------	-------------	---------

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.7 12.6 9.35 P130 P140	g)624	\$ & P140228B_	Matrix Dilution Collected Received _19 Extracted Analyzed	02/11/20 02/26/20	014 14:24 014 09:07 014 21:30 014 00:04	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	73.0 1800.0		0.18 0.18	2,3,7,8-TCDF-130 2,3,7,8-TCDD-130 1,2,3,7,8-PeCDF-	0	2.00 2.00 2.00	75 82 76
2,3,7,8-TCDD Total TCDD	3.9 170.0		0.19 0.19	2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD- 1,2,3,4,7,8-PeCDD- 1,2,3,4,7,8-HxCD	13C •13C	2.00 2.00 2.00 2.00	70 71 77 107
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	73.0 160.0 1600.0	 	0.21 0.23 0.22	1,2,3,4,7,8-HxCD 1,2,3,6,7,8-HxCD 2,3,4,6,7,8-HxCD 1,2,3,7,8,9-HxCD 1,2,3,4,7,8-HxCD	F-13C F-13C F-13C	2.00 2.00 2.00 2.00 2.00	90 84 45 88
1,2,3,7,8-PeCDD Total PeCDD	20.0 290.0		0.24 0.24	1,2,3,4,7,8-HxCD 1,2,3,6,7,8-HxCD 1,2,3,4,6,7,8-HpC 1,2,3,4,7,8,9-HpC	D-13C DF-13C	2.00 2.00 2.00 2.00	80 70 73 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	130.0 130.0 200.0		0.49 0.39 0.44	1,2,3,4,6,7,8-HpC 0CDD-13C		2.00 2.00 4.00	70 45
1,2,3,7,8,9-HxCDF Total HxCDF	27.0 1700.0		0.53 0.46	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCD	C D-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	26.0 61.0 42.0 770.0		0.52 0.42 0.31 0.42	2,3,7,8-TCDD-370	CI4	0.20	88
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	690.0 32.0 1000.0	 	0.43 0.25 0.34	Total 2,3,7,8-TCD Equivalence: 160 (Using 2005 WHC	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	640.0 1300.0		0.88 0.88				
OCDF OCDD	370.0 4100.0		0.50 1.50				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Lab Sample ID 10257346010-S Filename P140228B_10 Injected By BAL Total Amount Extracted 10.7 g Matrix Soil % Moisture 12.6 Dilution NA Dry Weight Extracted 9.35 g Collected 02/04/2014 14:24 ICAL ID P130624 Received 02/11/2014 09:07 CCal Filename(s) P140228B_01 & P140228B_19 Extracted 02/26/2014 21:30 Method Blank ID BLANK-39465 Analyzed 03/01/2014 00:04	
Conc RL Parameter ng/Kg ng/Kg WHO2005 LB MB UB	
2,3,7,8-TCDF73.00.180.100007.31317.31317.3131Total TCDF1800.00.180.000000.00000.00000.0000	
2,3,7,8-TCDD3.90.191.000003.89693.89693.8969Total TCDD170.00.190.000000.00000.0000	
1,2,3,7,8-PeCDF73.00.210.030002.20242.20242.20242,3,4,7,8-PeCDF160.00.230.3000046.995946.995946.9959Total PeCDF1600.00.220.000000.00000.0000	
1,2,3,7,8-PeCDD20.00.241.0000020.290520.290520.2905Total PeCDD290.00.240.000000.00000.00000.0000	
1,2,3,4,7,8-HxCDF130.00.490.1000012.572212.572212.57221,2,3,6,7,8-HxCDF130.00.390.1000013.074213.074213.07422,3,4,6,7,8-HxCDF200.00.440.1000019.741819.741819.74181,2,3,7,8,9-HxCDF27.00.530.100002.70322.70322.7032Total HxCDF1700.00.460.000000.00000.00000.0000	
1,2,3,4,7,8-HxCDD26.00.520.100002.56722.56722.56721,2,3,6,7,8-HxCDD61.00.420.100006.08606.08606.08601,2,3,7,8,9-HxCDD42.00.310.100004.20654.20654.2065Total HxCDD770.00.420.000000.00000.00000.0000	
1,2,3,4,6,7,8-HpCDF690.00.430.010006.88286.88286.88281,2,3,4,7,8,9-HpCDF32.00.250.010000.32230.32230.3223Total HpCDF1000.00.340.000000.00000.00000.0000	
1,2,3,4,6,7,8-HpCDD640.00.880.010006.38336.38336.3833Total HpCDD1300.00.880.000000.00000.00000.0000	
OCDF OCDD370.0 4100.00.50 1.50.00030 	

160 ng/Kg 160 ng/Kg 160 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.2 7.7 9.41 P130 P140	g)624	\$ & P140228B_	Matrix Dilution Collected Received 19 Extracted Analyzed	02/11/20 02/26/20	014 14:55 014 09:07 014 21:30 014 00:47	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	130.0 3400.0		0.29 0.29 E	2,3,7,8-TCDF-130 2,3,7,8-TCDD-130 1,2,3,7,8-PeCDF-	C	2.00 2.00 2.00	73 81 71
2,3,7,8-TCDD Total TCDD	8.7 340.0		0.30 0.30	2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C •13C	2.00 2.00	66 70
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	130.0 290.0 3200.0	 	0.41 0.52 0.46	1,2,3,4,7,8-HxCD 1,2,3,6,7,8-HxCD 2,3,4,6,7,8-HxCD 1,2,3,7,8,9-HxCD 1,2,3,4,7,8-HxCD	F-13C F-13C F-13C	2.00 2.00 2.00 2.00 2.00 2.00	97 92 84 57 81
1,2,3,7,8-PeCDD Total PeCDD	36.0 620.0		0.52 0.52	1,2,3,4,7,8-HxCD 1,2,3,6,7,8-HxCD 1,2,3,4,6,7,8-HpC 1,2,3,4,7,8,9-HpC	D-13C DF-13C	2.00 2.00 2.00 2.00	61 71 67 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	290.0 210.0 390.0		0.94 0.78 1.30	1,2,3,4,7,6,9-hpC 1,2,3,4,6,7,8-HpC OCDD-13C		2.00 2.00 4.00	70 48
1,2,3,7,8,9-HxCDF Total HxCDF	56.0 3200.0		1.20 1.10	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCD		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	47.0 100.0 75.0 1400.0		0.80 0.89 0.88 0.86	2,3,7,8-TCDD-37(CI4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1400.0 61.0 1900.0	 	0.69 0.71 0.70	Total 2,3,7,8-TCD Equivalence: 290 (Using 2005 WHC	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	920.0 1900.0		1.10 1.10				
OCDF OCDD	490.0 4500.0		0.63 1.40				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

ParameterConc ng/KgRL ng/KgWHO2005LBMBUB2,3,7.8-TCDF Total TCDF130.00.290.1000012.716612.716612.71662,3,7.8-TCDD Total TCDD340.00.290.000000.00000.00000.00002,3,7.8-TCDD Total TCDD8.70.301.000008.65438.65438.65431,2,3,7.8-TCDD Total TCDD340.00.300.000000.00000.00000.00001,2,3,7.8-PeCDF 2,3,4,7.8-PeCDF130.00.410.030004.00154.00154.00152,3,4,7.8-PeCDF Total PeCDD36.00.520.3000087.827787.827787.8277736.00.521.000000.00000.00000.00001,2,3,7.8-HxCDF290.00.520.000000.00000.00001,2,3,7.8-HxCDF210.00.780.1000028.628628.628628.62861,2,3,6,7.8-HxCDF210.00.780.1000021.051621.051621.05161,2,3,7,8-HxCDF390.01.30.1000038.652438.652438.65241,2,3,7,8-HxCDF50.01.20.100005.59265.59265.59261,2,3,7,8-HxCDF50.01.40.000000.00000.00001,2,3,4,6,7,8-HxCDD75.00.880.100007.52097.52091,2,3,7,8-HxCDD75.00.880.100007.52097.52091,2,3,4,6,7,8-HxCDD75.00.880.100000.0	Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14022 BAL 10.2 g 7.7 9.41 g P13062 P14022	246011-S 28B_11 24	140228B_19	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 1 02/11/2014 0 02/26/2014 2 03/01/2014 0	9:07 1:30
Total TCDF 3400.0 0.29 0.00000 0.0000 0.0000 2,3,7,8-TCDD 8.7 0.30 1.00000 8.6543 8.6543 8.6543 Total TCDD 340.0 0.30 0.00000 0.0000 0.0000 0.0000 1,2,3,7,8-PeCDF 130.0 0.41 0.03000 4.0015 4.0015 4.0015 2,3,4,7,8-PeCDF 290.0 0.52 0.30000 87.8277 87.8277 87.8277 Total PeCDF 3200.0 0.46 0.0000 0.0000 0.0000 0.0000 1,2,3,7,8-PeCDD 36.0 0.52 1.00000 36.0399 36.0399 36.0399 Total PeCDD 620.0 0.52 0.00000 0.0000 0.0000 0.0000 1,2,3,7,8-HxCDF 290.0 0.94 0.10000 28.6286 28.6286 28.6286 1.2516 21.516 21.516 21.516 21.516 21.516 23.46.7,8-HxCDF 30.0 1.3 0.10000 36.6524 38.6524 38.6524 38.6524	Parameter			WHO2005	LB	MB	UB
Total TCDD 340.0 0.30 0.00000 0.0000 0.0000 0.0000 1.2,3,7,8-PeCDF 130.0 0.41 0.03000 4.0015 4.0015 4.0015 2,3,4,7,8-PeCDF 290.0 0.52 0.30000 87.8277 87.8277 87.8277 Total PeCDF 3200.0 0.46 0.00000 0.0000 0.0000 1,2,3,7,8-PeCDD 36.0 0.52 1.00000 36.0399 36.0399 36.0399 Total PeCDD 620.0 0.52 0.00000 0.0000 0.0000 0.0000 1,2,3,4,7,8-HxCDF 290.0 0.94 0.10000 28.6286 28.6286 28.6286 1,2,3,4,7,8-HxCDF 290.0 0.78 0.10000 21.0516 21.0516 21.0516 2,3,4,6,7,8-HxCDF 390.0 1.3 0.10000 5.926 5.5926 5.5926 Total HxCDF 3200.0 1.1 0.0000 0.0000 0.0000 1.03913 1,2,3,4,7,8-HxCDD 47.0 0.80 0.10000 4.66							
2,3,4,7,8-PeCDF 290.0 0.52 0.30000 87.8277 87.8277 87.8277 Total PeCDF 3200.0 0.46 0.00000 0.0000 0.0000 0.0000 1,2,3,7,8-PeCDD 36.0 0.52 1.00000 36.0399 36.0399 36.0399 Total PeCDD 620.0 0.52 0.00000 0.0000 0.0000 0.0000 1,2,3,4,7,8-HxCDF 290.0 0.94 0.10000 28.6286 28.6286 28.6286 1,2,3,4,7,8-HxCDF 290.0 0.78 0.10000 21.0516 21.0516 21.0516 2,3,4,6,7,8-HxCDF 390.0 1.3 0.10000 38.6524 38.6524 38.6524 1,2,3,4,7,8-HxCDF 56.0 1.2 0.10000 5.5926 5.5926 5.5926 Total HxCDF 3200.0 1.1 0.00000 0.0000 0.0000 0.0000 1,2,3,4,7,8-HxCDD 47.0 0.80 0.10000 16.681 4.6681 4.6681 1,2,3,4,7,8-HxCDD 100.0 0.89							
Total PeCDD 620.0 0.52 0.0000 0.0000 0.0000 0.0000 $1,2,3,4,7,8$ -HxCDF 290.0 0.94 0.10000 28.6286 28.6286 28.6286 $1,2,3,6,7,8$ -HxCDF 210.0 0.78 0.10000 21.0516 21.0516 21.0516 $2,3,4,6,7,8$ -HxCDF 390.0 1.3 0.10000 38.6524 38.6524 38.6524 $1,2,3,7,8,9$ -HxCDF 56.0 1.2 0.10000 5.5926 5.5926 5.5926 Total HxCDF 3200.0 1.1 0.00000 0.0000 0.0000 $1,2,3,4,7,8$ -HxCDD 47.0 0.80 0.10000 4.6681 4.6681 $1,2,3,6,7,8$ -HxCDD 75.0 0.88 0.10000 10.3913 10.3913 $1,2,3,7,8,9$ -HxCDD 75.0 0.88 0.10000 7.5209 7.5209 Total HxCDD 1400.0 0.69 0.01000 14.2588 14.2588 14.2588 $1,2,3,4,6,7,8$ -HpCDF 61.0 0.71 0.01000 0.6129 0.6129 Total HpCDF 1900.0 0.70 0.0000 0.0000 0.0000 $1,2,3,4,6,7,8$ -HpCDD 92.00 1.1 0.01000 9.2390 9.2390 9.2390 Total HpCDF 1900.0 1.1 0.01000 0.0000 0.0000 0.0000 $0.CDF$ 490.0 0.63 0.0030 0.1458 0.1458 0.1458	2,3,4,7,8-PeCDF	290.0	0.52	0.30000	87.8277	87.8277	87.8277
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
1,2,3,6,7,8-HxCDD100.00.890.1000010.391310.391310.39131,2,3,7,8,9-HxCDD75.00.880.100007.52097.52097.5209Total HxCDD1400.00.860.000000.00000.00000.00001,2,3,4,6,7,8-HpCDF1400.00.690.0100014.258814.258814.25881,2,3,4,6,7,8-HpCDF61.00.710.010000.61290.61290.6129Total HpCDF1900.00.700.000000.00000.00000.00001,2,3,4,6,7,8-HpCDD920.01.10.010009.23909.23909.2390Total HpCDD1900.01.10.000000.00000.00000.00000CDF490.00.630.00300.14580.14580.1458	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	210.0 390.0 56.0	0.78 1.3 1.2	0.10000 0.10000 0.10000	21.0516 38.6524 5.5926	21.0516 38.6524 5.5926	21.0516 38.6524 5.5926
1,2,3,4,7,8,9-HpCDF61.00.710.010000.61290.61290.6129Total HpCDF1900.00.700.000000.00000.00000.00001,2,3,4,6,7,8-HpCDD920.01.10.010009.23909.23909.2390Total HpCDD1900.01.10.000000.00000.00000.0000OCDF490.00.630.000300.14580.14580.1458	1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	100.0 75.0	0.89 0.88	0.10000 0.10000	10.3913 7.5209	10.3913 7.5209	10.3913 7.5209
Total HpCDD1900.01.10.000000.00000.00000.0000OCDF490.00.630.000300.14580.14580.1458	1,2,3,4,7,8,9-HpCDF	61.0	0.71	0.01000	0.6129	0.6129	0.6129

290 ng/Kg 290 ng/Kg 290 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.8 8.3 9.90 P130 P140	g)624	a P140228B_	Matrix Dilution Collected Received _19 Extracted Analyzed	02/11/20 02/26/20	014 09:15 014 09:07 014 21:30 014 01:30	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	54.0 1300.0		0.21 0.21	2,3,7,8-TCDF-130 2,3,7,8-TCDD-130 1,2,3,7,8-PeCDF-	C	2.00 2.00 2.00	68 72 69
2,3,7,8-TCDD Total TCDD	3.0 120.0		0.21 0.21	2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD- 1,2,3,4,7,8-HxCD	13C •13C	2.00 2.00 2.00 2.00	65 70 86
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	57.0 110.0 1200.0	 	0.31 0.46 0.38	1,2,3,6,7,8-HxCD 2,3,4,6,7,8-HxCD 1,2,3,7,8,9-HxCD 1,2,3,4,7,8-HxCD	F-13C F-13C F-13C	2.00 2.00 2.00 2.00 2.00	80 81 75 51 76
1,2,3,7,8-PeCDD Total PeCDD	14.0 190.0		0.32 0.32	1,2,3,4,7,8-HXCD 1,2,3,6,7,8-HxCD 1,2,3,4,6,7,8-HpC 1,2,3,4,7,8,9-HpC	D-13C DF-13C	2.00 2.00 2.00 2.00	64 63 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	93.0 79.0 120.0		0.41 0.42 0.45	1,2,3,4,6,7,8-HpC OCDD-13C		2.00 2.00 4.00	61 40
1,2,3,7,8,9-HxCDF Total HxCDF	17.0 1100.0		0.54 0.46	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCD		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	19.0 49.0 37.0 550.0		0.26 0.36 0.61 0.41	2,3,7,8-TCDD-370	CI4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	440.0 20.0 720.0	 	0.32 0.41 0.37	Total 2,3,7,8-TCD Equivalence: 110 (Using 2005 WHC	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	920.0 1900.0		0.97 0.97				
OCDF OCDD	430.0 5700.0		0.46 0.48				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

-TCDD Toxic Equivalency (TEQ) Calculations 8

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14022 BAL 10.8 g 8.3 9.90 g P13062 P14022	246012-S 28B_12 24	140228B_19	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/05/2014 09 02/11/2014 09 02/26/2014 20 03/01/2014 00	9:07 1:30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	МВ	UB
2,3,7,8-TCDF	54.0	0.21	0.10000	5.3519	5.3519	5.3519
Total TCDF	1300.0	0.21	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	3.0	0.21	1.00000	2.9992	2.9992	2.9992
Total TCDD	120.0	0.21	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	57.0	0.31	0.03000	1.6989	1.6989	1.6989
2,3,4,7,8-PeCDF	110.0	0.46	0.30000	31.8489	31.8489	31.8489
Total PeCDF	1200.0	0.38	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	14.0	0.32	1.00000	14.4344	14.4344	14.4344
Total PeCDD	190.0	0.32	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	93.0	0.41	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\\ \end{array}$	9.2541	9.2541	9.2541
1,2,3,6,7,8-HxCDF	79.0	0.42		7.8939	7.8939	7.8939
2,3,4,6,7,8-HxCDF	120.0	0.45		11.5691	11.5691	11.5691
1,2,3,7,8,9-HxCDF	17.0	0.54		1.6940	1.6940	1.6940
Total HxCDF	1100.0	0.46		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	19.0	0.26	0.10000	1.8932	1.8932	1.8932
1,2,3,6,7,8-HxCDD	49.0	0.36	0.10000	4.8812	4.8812	4.8812
1,2,3,7,8,9-HxCDD	37.0	0.61	0.10000	3.6766	3.6766	3.6766
Total HxCDD	550.0	0.41	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	440.0	0.32	0.01000	4.4471	4.4471	4.4471
1,2,3,4,7,8,9-HpCDF	20.0	0.41	0.01000	0.1967	0.1967	0.1967
Total HpCDF	720.0	0.37	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	920.0	0.97	0.01000	9.2161	9.2161	9.2161
Total HpCDD	1900.0	0.97	0.00000	0.0000	0.0000	0.0000
OCDF	430.0	0.46	0.00030	0.1299	0.1299	0.1299
OCDD	5700.0	0.48	0.00030	1.7155	1.7155	1.7155
				110 ng/Kg	110 ng/Kg	110 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.6 12.2 9.31 P130 P140	g)624	• P140228B_	Matrix Dilution Collected Received 19 Extracted Analyzed	02/11/20 02/26/20	14 09:00 14 09:07 14 21:30 14 02:12	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	140 3200		0.31 0.31 E	2,3,7,8-TCDF-130 2,3,7,8-TCDD-130	C	2.00 2.00	76 84 72
2,3,7,8-TCDD Total TCDD	 250	7.2	0.24 I 0.24	1,2,3,7,8-PeCDF- 2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00 2.00	72 70 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	120 240 2800	 	0.64 0.46 0.55	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 2,3,4,6,7,8-HxCDI 1,2,3,7,8,9-HxCDI	F-13C F-13C F-13C	2.00 2.00 2.00 2.00	101 94 85 59
1,2,3,7,8-PeCDD Total PeCDD	26 390		0.36 0.36	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 1,2,3,4,6,7,8-HpC	D-13C DF-13C	2.00 2.00 2.00	88 73 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	200 160		0.63 0.77	1,2,3,4,7,8,9-HpC 1,2,3,4,6,7,8-HpC OCDD-13C	DD-13C	2.00 2.00 4.00	62 68 43
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	250 34 2200		0.83 0.77 0.75	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	28 62 48 810		0.53 0.60 0.54 0.56	2,3,7,8-TCDD-370	CI4	0.20	117
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	870 37 1300	 	0.55 0.96 0.75	Total 2,3,7,8-TCD Equivalence: 220 (Using 2005 WHC	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	920 1900		1.90 1.90				
OCDF OCDD	630 6000		1.00 0.92				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

I = Interference present

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14022 BAL 10.6 g 12.2 9.31 g P13062	46013-S 28B_13 24 28B_01 & P	140228B_19	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/05/2014 09 02/11/2014 09 02/26/2014 2 03/01/2014 09	9:07 1:30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	140	0.31	0.10000	13.8611	13.8611	13.8611
Total TCDF	3200	0.31	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.24	1.00000	7.2140	7.2140	7.2140
Total TCDD	250	0.24	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	120	0.64	0.03000	3.6829	3.6829	3.6829
2,3,4,7,8-PeCDF	240	0.46	0.30000	72.1345	72.1345	72.1345
Total PeCDF	2800	0.55	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	26	0.36	1.00000	26.2290	26.2290	26.2290
Total PeCDD	390	0.36	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	200	0.63	0.10000	20.1051	20.1051	20.1051
1,2,3,6,7,8-HxCDF	160	0.77	0.10000	15.8041	15.8041	15.8041
2,3,4,6,7,8-HxCDF	250	0.83	0.10000	24.8891	24.8891	24.8891
1,2,3,7,8,9-HxCDF	34	0.77	0.10000	3.4094	3.4094	3.4094
Total HxCDF	2200	0.75	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	28	0.53	0.10000	2.8169	2.8169	2.8169
1,2,3,6,7,8-HxCDD	62	0.60	0.10000	6.2413	6.2413	6.2413
1,2,3,7,8,9-HxCDD	48	0.54	0.10000	4.7967	4.7967	4.7967
Total HxCDD	810	0.56	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	870	0.55	0.01000	8.6815	8.6815	8.6815
1,2,3,4,7,8,9-HpCDF	37	0.96	0.01000	0.3717	0.3717	0.3717
Total HpCDF	1300	0.75	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	920	1.9	0.01000	9.1633	9.1633	9.1633
Total HpCDD	1900	1.9	0.00000	0.0000	0.0000	0.0000
OCDF	630	1.0	0.00030	0.1884	0.1884	0.1884
OCDD	6000	0.92	0.00030	1.8081	1.8081	1.8081
				220 ng/Kg	220 ng/Kg	220 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8	290 Samp	le Analysis	Results
----------	----------	-------------	---------

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.2 16.9 8.48 P130 P140	g)624	k P140228B_	Matrix Dilution Collected Received 19 Extracted Analyzed	02/11/20 02/26/20	14 09:45 14 09:07 14 21:30 14 02:55	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	160 3700		0.96 0.96 E	2,3,7,8-TCDF-130 2,3,7,8-TCDD-130	C	2.00 2.00	67 73
2,3,7,8-TCDD Total TCDD	 210	7.8	0.92 l 0.92	1,2,3,7,8-PeCDF- 2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00 2.00	64 61 63
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	140 250 2800	 	2.20 2.00 2.10	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 2,3,4,6,7,8-HxCDI 1,2,3,7,8,9-HxCDI	F-13C F-13C F-13C	2.00 2.00 2.00 2.00	85 83 77 70 77
1,2,3,7,8-PeCDD Total PeCDD	26 340		1.30 1.30	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 1,2,3,4,6,7,8-HpC	D-13C DF-13C	2.00 2.00 2.00	77 66 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	200 200 250		1.40 1.70 1.70	1,2,3,4,7,8,9-HpC 1,2,3,4,6,7,8-HpC OCDD-13C		2.00 2.00 4.00	59 65 42
1,2,3,7,8,9-HxCDF Total HxCDF	41 2200		1.90 1.70	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	28 66 52 740		2.10 2.60 2.70 2.50	2,3,7,8-TCDD-370	CI4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	810 45 1200	 	1.10 1.20 1.20	Total 2,3,7,8-TCD Equivalence: 230 (Using 2005 WHC	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	1100 2100		2.70 2.70				
OCDF OCDD	660 7000		3.00 2.80				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

I = Interference present

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14022 BAL 10.2 g 16.9 8.48 g P13062	246014-S 28B_14 24 28B_01 & P	140228B_19	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/05/2014 0 02/11/2014 0 02/26/2014 2 03/01/2014 0	9:07 1:30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	160	0.96	0.10000	16.4758	16.4758	16.4758
Total TCDF	3700	0.96	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.92	1.00000	7.7820	7.7820	7.7820
Total TCDD	210	0.92	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	140	2.2	0.03000	4.1408	4.1408	4.1408
2,3,4,7,8-PeCDF	250	2.0	0.30000	74.6559	74.6559	74.6559
Total PeCDF	2800	2.1	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	26	1.3	1.00000	25.9939	25.9939	25.9939
Total PeCDD	340	1.3	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	200	1.4	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\\ \end{array}$	19.7951	19.7951	19.7951
1,2,3,6,7,8-HxCDF	200	1.7		20.2713	20.2713	20.2713
2,3,4,6,7,8-HxCDF	250	1.7		24.6069	24.6069	24.6069
1,2,3,7,8,9-HxCDF	41	1.9		4.0567	4.0567	4.0567
Total HxCDF	2200	1.7		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	28	2.1	0.10000	2.7781	2.7781	2.7781
1,2,3,6,7,8-HxCDD	66	2.6	0.10000	6.5790	6.5790	6.5790
1,2,3,7,8,9-HxCDD	52	2.7	0.10000	5.2103	5.2103	5.2103
Total HxCDD	740	2.5	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	810	1.1	0.01000	8.1337	8.1337	8.1337
1,2,3,4,7,8,9-HpCDF	45	1.2	0.01000	0.4486	0.4486	0.4486
Total HpCDF	1200	1.2	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	1100	2.7	0.01000	10.7723	10.7723	10.7723
Total HpCDD	2100	2.7	0.00000	0.0000	0.0000	0.0000
OCDF	660	3.0	0.00030	0.1974	0.1974	0.1974
OCDD	7000	2.8	0.00030	2.0878	2.0878	2.0878
				230 ng/Kg	230 ng/Kg	230 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8	290 Samp	le Analysis	Results
----------	----------	-------------	---------

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.3 9.4 9.33 P130 P140	g)624	\$ & P140228B_	Matrix Dilution Collected Received 19 Extracted Analyzed	02/11/20 02/26/20	14 09:45 14 09:07 14 21:30 14 03:38	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	330 7100		0.71 0.71 E	2,3,7,8-TCDF-130 2,3,7,8-TCDD-130	C	2.00 2.00	78 87
2,3,7,8-TCDD Total TCDD	17 550		0.96 0.96	1,2,3,7,8-PeCDF- 2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00 2.00	75 73 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	230 420 4700	 	2.40 2.00 2.20	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 2,3,4,6,7,8-HxCDI 1,2,3,7,8,9-HxCDI	F-13C F-13C F-13C	2.00 2.00 2.00 2.00	94 93 87 83
1,2,3,7,8-PeCDD Total PeCDD	47 680		1.10 1.10	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 1,2,3,4,6,7,8-HpC	D-13C DF-13C	2.00 2.00 2.00	86 74 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	320 280 370		1.80 1.40 2.10	1,2,3,4,7,8,9-HpC 1,2,3,4,6,7,8-HpC OCDD-13C		2.00 2.00 4.00	67 72 47
1,2,3,7,8,9-HxCDF Total HxCDF	55 3300		3.30 2.10	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	44 83 74 1000		1.40 1.90 1.50 1.60	2,3,7,8-TCDD-370	CI4	0.20	106
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1100 49 1500	 	0.95 2.00 1.50	Total 2,3,7,8-TCD Equivalence: 380 (Using 2005 WHC	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	860 1800		2.00 2.00				
OCDF OCDD	410 5000		2.10 2.90				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

-TCDD Toxic Equivalency (TEQ) Calculations 8

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14022 BAL 10.3 g 9.4 9.33 g P13062	246015-S 28B_15 24 28B_01 & P	140228B_19	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/05/2014 0 02/11/2014 0 02/26/2014 2 03/01/2014 0	9:07 1:30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	330	0.71	0.10000	32.7150	32.7150	32.7150
Total TCDF	7100	0.71	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	17	0.96	1.00000	17.0473	17.0473	17.0473
Total TCDD	550	0.96	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	230	2.4	0.03000	6.8601	6.8601	6.8601
2,3,4,7,8-PeCDF	420	2.0	0.30000	126.6528	126.6528	126.6528
Total PeCDF	4700	2.2	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	47	1.1	1.00000	47.3344	47.3344	47.3344
Total PeCDD	680	1.1	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	320	1.8	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\\ \end{array}$	31.9249	31.9249	31.9249
1,2,3,6,7,8-HxCDF	280	1.4		28.1113	28.1113	28.1113
2,3,4,6,7,8-HxCDF	370	2.1		37.3267	37.3267	37.3267
1,2,3,7,8,9-HxCDF	55	3.3		5.5191	5.5191	5.5191
Total HxCDF	3300	2.1		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	44	1.4	0.10000	4.3691	4.3691	4.3691
1,2,3,6,7,8-HxCDD	83	1.9	0.10000	8.3001	8.3001	8.3001
1,2,3,7,8,9-HxCDD	74	1.5	0.10000	7.3762	7.3762	7.3762
Total HxCDD	1000	1.6	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	1100	0.95	0.01000	11.2948	11.2948	11.2948
1,2,3,4,7,8,9-HpCDF	49	2.0	0.01000	0.4879	0.4879	0.4879
Total HpCDF	1500	1.5	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	860	2.0	0.01000	8.5669	8.5669	8.5669
Total HpCDD	1800	2.0	0.00000	0.0000	0.0000	0.0000
OCDF	410	2.1	0.00030	0.1232	0.1232	0.1232
OCDD	5000	2.9	0.00030	1.4992	1.4992	1.4992
				380 ng/Kg	380 ng/Kg	380 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8	290 Samp	le Analysis	Results
----------	----------	-------------	---------

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.2 16.8 8.49 P130 P140	g)624	\$ & P140228B_	Matrix Dilution Collected Received 19 Extracted Analyzed	02/11/20 02/26/20	14 12:52 14 09:07 14 21:30 14 04:21	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	29.0 690.0		0.46 0.46	2,3,7,8-TCDF-130 2,3,7,8-TCDD-130	2	2.00 2.00	75 81
2,3,7,8-TCDD Total TCDD	41.0	1.0	0.46 IJ 0.46	1,2,3,7,8-PeCDF- 2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00 2.00	70 66 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	26.0 50.0 600.0	 	0.60 0.58 0.59	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 2,3,4,6,7,8-HxCDI 1,2,3,7,8,9-HxCDI	=-13C =-13C =-13C	2.00 2.00 2.00 2.00	91 88 82 82
1,2,3,7,8-PeCDD Total PeCDD	6.7 110.0		0.60 0.60	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 1,2,3,4,6,7,8-HpC	D-13C DF-13C	2.00 2.00 2.00	84 72 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	46.0 50.0 61.0		0.73 0.90 0.72	1,2,3,4,7,8,9-HpC 1,2,3,4,6,7,8-HpC OCDD-13C		2.00 2.00 4.00	69 74 51
1,2,3,7,8,9-HxCDF Total HxCDF	9.5 610.0		0.70 0.76	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	12.0 32.0 24.0 320.0		1.20 1.10 0.98 1.10	2,3,7,8-TCDD-370	CI4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	280.0 13.0 540.0	 	1.20 1.20 1.20	Total 2,3,7,8-TCD Equivalence: 61 n (Using 2005 WHC	g/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	680.0 1400.0		2.50 2.50				
OCDF OCDD	340.0 5300.0		1.20 1.80				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

-TCDD Toxic Equivalency (TEQ) Calculations 8

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14022 BAL 10.2 g 16.8 8.49 g P13062	246016-S 28B_16 24 28B_01 & P	140228B_19	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 12 02/11/2014 09 02/26/2014 21 03/01/2014 04):07 :30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	29.0	0.46	0.10000	2.8982	2.8982	2.8982
Total TCDF	690.0	0.46	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.46	1.00000	1.0046	1.0046	1.0046
Total TCDD	41.0	0.46	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	26.0	0.60	0.03000	0.7718	0.7718	0.7718
2,3,4,7,8-PeCDF	50.0	0.58	0.30000	14.9708	14.9708	14.9708
Total PeCDF	600.0	0.59	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	6.7	0.60	1.00000	6.6760	6.6760	6.6760
Total PeCDD	110.0	0.60	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	46.0	0.73	0.10000	4.5985	4.5985	4.5985
1,2,3,6,7,8-HxCDF	50.0	0.90	0.10000	5.0122	5.0122	5.0122
2,3,4,6,7,8-HxCDF	61.0	0.72	0.10000	6.0587	6.0587	6.0587
1,2,3,7,8,9-HxCDF	9.5	0.70	0.10000	0.9543	0.9543	0.9543
Total HxCDF	610.0	0.76	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	12.0	1.2	0.10000	1.1630	1.1630	1.1630
1,2,3,6,7,8-HxCDD	32.0	1.1	0.10000	3.2300	3.2300	3.2300
1,2,3,7,8,9-HxCDD	24.0	0.98	0.10000	2.3563	2.3563	2.3563
Total HxCDD	320.0	1.1	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	280.0	1.2	0.01000	2.8133	2.8133	2.8133
1,2,3,4,7,8,9-HpCDF	13.0	1.2	0.01000	0.1286	0.1286	0.1286
Total HpCDF	540.0	1.2	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	680.0	2.5	0.01000	6.8214	6.8214	6.8214
Total HpCDD	1400.0	2.5	0.00000	0.0000	0.0000	0.0000
OCDF	340.0	1.2	0.00030	0.1033	0.1033	0.1033
OCDD	5300.0	1.8	0.00030	1.5833	1.5833	1.5833
				61 ng/Kg	61 ng/Kg	61 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.4 11.3 9.22 P130 P140	g)624	k P140228B_	Matrix Dilution Collected Received _19 Extracted Analyzed	02/11/20 02/26/20	14 13:45 14 09:07 14 21:30 14 05:04	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	46 1100		0.43 0.43	2,3,7,8-TCDF-130 2,3,7,8-TCDD-130	2	2.00 2.00 2.00	70 77 66
2,3,7,8-TCDD Total TCDD	87	2.4	0.36 I 0.36	1,2,3,7,8-PeCDF- 2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00	62 65
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	46 97 1100	 	0.62 0.65 0.64	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDF	=-13C =-13C =-13C	2.00 2.00 2.00 2.00 2.00	85 84 79 74 76
1,2,3,7,8-PeCDD Total PeCDD	14 170		0.69 0.69	1,2,3,6,7,8-HxCDI 1,2,3,4,6,7,8-HpC	D-13C DF-13C	2.00 2.00 2.00 2.00	70 68 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	89 82 110		1.70 0.89 1.20	1,2,3,4,7,8,9-HpC 1,2,3,4,6,7,8-HpC OCDD-13C		2.00 2.00 4.00	70 50
1,2,3,7,8,9-HxCDF Total HxCDF	17 1000		0.70 1.10	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	18 43 35 490		1.60 1.50 1.20 1.50	2,3,7,8-TCDD-370	C14	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	490 24 760	 	0.53 0.88 0.71	Total 2,3,7,8-TCD Equivalence: 110 (Using 2005 WHC	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	840 1800		0.99 0.99				
OCDF OCDD	660 5700		1.40 2.00				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

I = Interference present

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

2,3,7,8-TCDD	Toxic Equival	lency (TEQ)	Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14022 BAL 10.4 g 11.3 9.22 g P13062	46017-S 8B_17 24 28B_01 & P	140228B_19	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 13 02/11/2014 09 02/26/2014 2 03/01/2014 09	9:07 1:30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	МВ	UB
2,3,7,8-TCDF	46	0.43	0.10000	4.6215	4.6215	4.6215
Total TCDF	1100	0.43	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.36	1.00000	2.3909	2.3909	2.3909
Total TCDD	87	0.36	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	46	0.62	0.03000	1.3870	1.3870	1.3870
2,3,4,7,8-PeCDF	97	0.65	0.30000	29.1231	29.1231	29.1231
Total PeCDF	1100	0.64	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	14	0.69	1.00000	14.2288	14.2288	14.2288
Total PeCDD	170	0.69	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	89	1.7	0.10000	8.9167	8.9167	8.9167
1,2,3,6,7,8-HxCDF	82	0.89	0.10000	8.2004	8.2004	8.2004
2,3,4,6,7,8-HxCDF	110	1.2	0.10000	11.0519	11.0519	11.0519
1,2,3,7,8,9-HxCDF	17	0.70	0.10000	1.7175	1.7175	1.7175
Total HxCDF	1000	1.1	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	18	1.6	0.10000	1.8308	1.8308	1.8308
1,2,3,6,7,8-HxCDD	43	1.5	0.10000	4.3374	4.3374	4.3374
1,2,3,7,8,9-HxCDD	35	1.2	0.10000	3.5304	3.5304	3.5304
Total HxCDD	490	1.5	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	490	0.53	0.01000	4.8664	4.8664	4.8664
1,2,3,4,7,8,9-HpCDF	24	0.88	0.01000	0.2371	0.2371	0.2371
Total HpCDF	760	0.71	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	840	0.99	0.01000	8.4395	8.4395	8.4395
Total HpCDD	1800	0.99	0.00000	0.0000	0.0000	0.0000
OCDF	660	1.4	0.00030	0.1972	0.1972	0.1972
OCDD	5700	2.0	0.00030	1.7233	1.7233	1.7233
				110 ng/Kg	110 ng/Kg	110 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.6 9.1 9.64 P130 P140	g)624	S & P140301A_1	Matrix Dilution Collected Received 15 Extracted Analyzed	02/11/20 02/26/20	14 14:11 14 09:07 14 21:30 14 16:29	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	13.0 240.0		0.130 0.130	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-	2	2.00 2.00 2.00	71 77 68
2,3,7,8-TCDD Total TCDD	 19.0	0.79	0.110 IJ 0.110	2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00	65 67
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	13.0 27.0 290.0	 	0.130 0.100 0.120	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	=-13C =-13C =-13C	2.00 2.00 2.00 2.00	78 79 74 54
1,2,3,7,8-PeCDD Total PeCDD	6.1 51.0		0.130 0.130	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 1,2,3,4,6,7,8-HpCI	D-13C DF-13C	2.00 2.00 2.00	73 64 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	23.0 16.0 31.0		0.220 0.370 0.190	1,2,3,4,7,8,9-HpCl 1,2,3,4,6,7,8-HpCl OCDD-13C		2.00 2.00 4.00	62 67 68 Y
1,2,3,7,8,9-HxCDF Total HxCDF	4.2 340.0		0.230 J 0.250	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	14.0 36.0 27.0 370.0		0.500 0.460 0.360 0.440	2,3,7,8-TCDD-370	CI4	0.20	80
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	180.0 7.0 370.0	 	0.240 0.270 0.250	Total 2,3,7,8-TCD Equivalence: 44 no (Using 2005 WHO	g/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	850.0 1900.0		0.280 0.280				
OCDF OCDD	230.0 5800.0		0.200 0.310				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

NA = Not Applicable NC = Not Calculated

ND = Not Detected

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257346_82967101100XerC019748085er7682-6627

Page 44 of 56

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14030 BAL 10.6 g 9.1 9.64 g P13062 P14022	346018-S 01A_14 24	140301A_15	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 14 02/11/2014 09 02/26/2014 21 03/01/2014 16	:07 :30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	13.0	0.13	0.10000	1.2999	1.2999	1.2999
Total TCDF	240.0	0.13	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.11	1.00000	0.7901	0.7901	0.7901
Total TCDD	19.0	0.11	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	13.0	0.13	0.03000	0.3792	0.3792	0.3792
2,3,4,7,8-PeCDF	27.0	0.100	0.30000	7.9660	7.9660	7.9660
Total PeCDF	290.0	0.12	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	6.1	0.13	1.00000	6.1323	6.1323	6.1323
Total PeCDD	51.0	0.13	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	23.0	0.22	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\end{array}$	2.2521	2.2521	2.2521
1,2,3,6,7,8-HxCDF	16.0	0.37		1.5828	1.5828	1.5828
2,3,4,6,7,8-HxCDF	31.0	0.19		3.0979	3.0979	3.0979
1,2,3,7,8,9-HxCDF	4.2	0.23		0.4189	0.4189	0.4189
Total HxCDF	340.0	0.25		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	14.0	0.50	0.10000	1.3776	1.3776	1.3776
1,2,3,6,7,8-HxCDD	36.0	0.46	0.10000	3.5695	3.5695	3.5695
1,2,3,7,8,9-HxCDD	27.0	0.36	0.10000	2.7198	2.7198	2.7198
Total HxCDD	370.0	0.44	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	180.0	0.24	0.01000	1.8242	1.8242	1.8242
1,2,3,4,7,8,9-HpCDF	7.0	0.27	0.01000	0.0699	0.0699	0.0699
Total HpCDF	370.0	0.25	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	850.0	0.28	0.01000	8.5450	8.5450	8.5450
Total HpCDD	1900.0	0.28	0.00000	0.0000	0.0000	0.0000
OCDF	230.0	0.20	0.00030	0.0682	0.0682	0.0682
OCDD	5800.0	0.31	0.00030	1.7485	1.7485	1.7485
				44 ng/Kg	44 ng/Kg	44 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

Lab Sample ID	BLANK-39446	Matrix	Solid
Filename	F140226B_09	Dilution	NA
Total Amount Extracted	10.5 g	Extracted	02/24/2014 21:00
ICAL ID	F131125	Analyzed	02/27/2014 02:08
CCal Filename(s)	F140226B_01 & F140226B_17	Injected By	BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.430	0.140	0.035 IJ 0.035 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 81 81
2,3,7,8-TCDD Total TCDD	ND	0.060	0.057 IJ 0.057	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	82 88 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND	0.150 	0.062 IJ 0.037 0.049	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	91 88 82 73
1,2,3,7,8-PeCDD Total PeCDD	ND	0.086	0.039 IJ 0.039	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	77 74 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND 0.094	 0.028	0.048 0.035 J 0.028 IJ	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	79 70
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.094		0.042 0.038 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND	0.081	0.050 0.052 IJ 0.048 0.050	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND	0.096	0.056 IJ 0.047 0.051	Total 2,3,7,8-TCDD Equivalence: 0.19 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.100	0.068	0.054 IJ 0.054 J			
OCDF OCDD	0.200	0.370	0.120 J 0.150 IJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

8-TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	F14022 BAL 10.5 g 0.0 10.5 g F13112		140226B_17	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 02/24/2014 1 02/24/2014 1 02/24/2014 2 02/27/2014 0	4:08 1:00
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	ND	0.035	0.10000	0.0136	0.0136	0.0136
Total TCDF	0.430	0.035	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.057	1.00000	0.0601	0.0601	0.0601
Total TCDD	ND	0.057	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	ND	0.062	0.03000	0.0044	0.0044	0.0044
2,3,4,7,8-PeCDF	ND	0.037	0.30000	0.0000	0.0056	0.0112
Total PeCDF	ND	0.049	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	ND	0.039	1.00000	0.0857	0.0857	0.0857
Total PeCDD	ND	0.039	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	ND	0.048	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\end{array}$	0.0000	0.0024	0.0048
1,2,3,6,7,8-HxCDF	0.094	0.035		0.0094	0.0094	0.0094
2,3,4,6,7,8-HxCDF	ND	0.028		0.0028	0.0028	0.0028
1,2,3,7,8,9-HxCDF	ND	0.042		0.0000	0.0021	0.0042
Total HxCDF	0.094	0.038		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	ND	0.050	0.10000	0.0000	0.0025	0.0050
1,2,3,6,7,8-HxCDD	ND	0.052	0.10000	0.0081	0.0081	0.0081
1,2,3,7,8,9-HxCDD	ND	0.048	0.10000	0.0000	0.0024	0.0048
Total HxCDD	ND	0.050	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	ND	0.056	0.01000	0.0010	0.0010	0.0010
1,2,3,4,7,8,9-HpCDF	ND	0.047	0.01000	0.0000	0.0002	0.0005
Total HpCDF	ND	0.051	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	ND	0.054	0.01000	0.0007	0.0007	0.0007
Total HpCDD	0.100	0.054	0.00000	0.0000	0.0000	0.0000
OCDF	0.200	0.12	0.00030	0.0001	0.0001	0.0001
OCDD	ND	0.15	0.00030	0.0001	0.0001	0.0001
				0.19 ng/Kg	0.20 ng/Kg	0.22 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

Lab Sample ID	BLANK-39465	Matrix	Solid
Filename	P140301A_05	Dilution	NA
Total Amount Extracted	10.4 g	Extracted	02/26/2014 21:30
ICAL ID	P130624	Analyzed	03/01/2014 10:03
CCal Filename(s)	P140228B_19 & P140301A_15	Injected By	BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND	0.14	0.140 IJ 0.140	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 82 75
2,3,7,8-TCDD Total TCDD	ND ND		0.150 0.150	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	70 73 83
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	0.160 0.110 0.130	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	87 83 83 79
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.160 0.160	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	79 72 77 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND	 	0.110 0.084 0.091 0.110	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	76 81 Y NA
Total HxCDF	ND		0.099	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	Ē	0.130 0.130 0.130 0.130 0.130	2,3,7,8-TCDD-37Cl4	0.20	90
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND	0.20	0.120 IJ 0.170 0.140	Total 2,3,7,8-TCDD Equivalence: 0.018 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.17 0.44		0.140 J 0.140 J			
OCDF OCDD	ND 0.95		0.260 0.330 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257346_829671101100XerC0199Ar8085er7682-6627

Page 48 of 56

> Tel: 612-607-1700 Fax: 612- 607-6444

8-TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P1403 BAL 10.4 g 0.0 10.4 g P1306		140301A_15	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 02/25/2014 2 02/25/2014 2 02/26/2014 2 03/01/2014 1	0:04 1:30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	ND	0.14	0.10000	0.0143	0.0143	0.0143
Total TCDF	ND	0.14	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.15	1.00000	0.0000	0.0752	0.1504
Total TCDD	ND	0.15	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	ND	0.16	0.03000	0.0000	0.0023	0.0047
2,3,4,7,8-PeCDF	ND	0.11	0.30000	0.0000	0.0169	0.0339
Total PeCDF	ND	0.13	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	ND	0.16	1.00000	0.0000	0.0775	0.1550
Total PeCDD	ND	0.16	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND	0.11 0.084 0.091 0.11 0.099	0.10000 0.10000 0.10000 0.10000 0.00000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0053 0.0042 0.0045 0.0057 0.0000	0.0107 0.0084 0.0091 0.0114 0.0000
1,2,3,4,7,8-HxCDD	ND	0.13	0.10000	0.0000	0.0067	0.0134
1,2,3,6,7,8-HxCDD	ND	0.13	0.10000	0.0000	0.0064	0.0129
1,2,3,7,8,9-HxCDD	ND	0.13	0.10000	0.0000	0.0065	0.0130
Total HxCDD	ND	0.13	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	ND	0.12	0.01000	0.0020	0.0020	0.0020
1,2,3,4,7,8,9-HpCDF	ND	0.17	0.01000	0.0000	0.0008	0.0017
Total HpCDF	ND	0.14	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	0.17	0.14	0.01000	0.0017	0.0017	0.0017
Total HpCDD	0.44	0.14	0.00000	0.0000	0.0000	0.0000
OCDF	ND	0.26	0.00030	0.0000	0.0000	0.0001
OCDD	0.95	0.33	0.00030	0.0003	0.0003	0.0003
				0.018 ng/Kg	0.23 ng/Kg	0.44 ng/Kg

0.018 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257346_829671101100XerC019948085er7682-6627

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	F14 10.0 F13 F14	1125	& F140226B_	Matrix Dilution Extracted 17 Analyzed Injected By	Solid NA 02/24/2014 2 02/27/2014 00 BAL	
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.23	115	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,2,7,8 DoCDE 12C	2.0 2.0 2.0	75 85 85
2,3,7,8-TCDD Total TCDD	0.20	0.18	89	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.0 2.0	85 97
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.2 1.1	117 109	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.0 2.0 2.0 2.0 2.0 2.0	81 89 87 82 77
1,2,3,7,8-PeCDD Total PeCDD	1.0	1.0	100	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13 1,2,3,4,7,8,9-HpCDF-13	2.0 C 2.0	78 78 78 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.1 1.1 1.0	110 109 100	1,2,3,4,6,7,8-HpCDD-13 OCDD-13C	C 2.0 4.0	83 69
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.1	107	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.2 1.3 1.2	115 128 119	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 0.94	106 94			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	1.0	102			
OCDF OCDD	2.0 2.0	2.0 2.2	99 110			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable

= See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. Report No.....10257348_829671101100XerCO1914808567682-6627

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	P14 10.6 P13 P14	0624	a P140301A_	Matrix Dilution Extracted 15 Analyzed Injected By	Solid NA 02/26/2014 2 03/01/2014 0 BAL	
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.22	112	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.0 2.0 2.0	79 85 75
2,3,7,8-TCDD Total TCDD	0.20	0.18	89	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.0 2.0	75 71 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.2 1.1	117 111	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.0 2.0 2.0 2.0 2.0	88 90 86 88 80
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.97	97	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13 1,2,3,4,7,8,9-HpCDF-13	2.0 C 2.0	80 75 82 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.1 1.1 1.1	111 112 112	1,2,3,4,6,7,8-HpCDD-13 0CDD-13C	C 2.0 C 2.0 4.0	80 100 Y
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.1	106	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.2 1.2 1.2	115 122 118	2,3,7,8-TCDD-37Cl4	0.20	85
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.0	114 103			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	1.1	106			
OCDF OCDD	2.0 2.0	2.2 2.2	108 110			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. Report No.....10257348_829671101100XerCO1914808567682-6627

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	F14 10.5 F13 F14	1125	6 F140226B_	Matrix Dilution Extracted 17 Analyzed Injected By	Solid NA 02/24/2014 2 02/27/2014 0 BAL	
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.24	119	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.0 2.0 2.0	64 74 78
2,3,7,8-TCDD Total TCDD	0.20	0.18	91	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.0 2.0	81 90
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.2 1.1	119 109	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.0 2.0 2.0 2.0 2.0 2.0	78 90 87 78 73
1,2,3,7,8-PeCDD Total PeCDD	1.0	1.0	103	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13 1,2,3,4,6,7,8-HpCDF-13	2.0 C 2.0	73 81 78 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.2 1.1 1.0	115 107 102	1,2,3,4,7,8,9-HpCDF-13 1,2,3,4,6,7,8-HpCDD-13 OCDD-13C	C 2.0 C 2.0 4.0	84 73
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.1	107	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.2 1.2 1.2	124 123 121	2,3,7,8-TCDD-37Cl4	0.20	75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 0.94	108 94			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	1.0	102			
OCDF OCDD	2.0 2.0	2.0 2.2	101 110			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations

Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. Report No.....10257348_829671101100XerCO1914808567682-6627

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290

Spike Recovery Relative Percent Difference (RPD) Results

Client	ESN Pacific				
Spike 1 ID Spike 1 Filename	LCS-39447 F140226B_15		Spike 2 ID Spike 2 Filename	LCSD-39448 F140226B_16	
Compound		Spike 1 %REC	Spike 2 %REC	%RPD	
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCD 2,3,4,7,8-PeCD 1,2,3,7,8-PeCD 1,2,3,4,7,8-HxC 1,2,3,6,7,8-HxC 2,3,4,6,7,8-HxC 1,2,3,7,8,9-HxC 1,2,3,4,7,8-HxC 1,2,3,4,7,8-HxC 1,2,3,4,6,7,8-HxC 1,2,3,4,6,7,8-HxC 1,2,3,4,6,7,8-Hx 1,2,3,4,6,7,8-Hx 1,2,3,4,6,7,8-Hx 1,2,3,4,6,7,8-Hx 0CDF 0CDD	F D D F D F D D D D D D D D D D D D D D	115 89 117 109 100 110 109 100 107 115 128 119 106 94 102 99 110	119 91 119 109 103 115 107 102 107 124 123 121 108 94 102 101 110	$\begin{array}{c} 3.4\\ 2.2\\ 1.7\\ 0.0\\ 3.0\\ 4.4\\ 1.9\\ 2.0\\ 0.0\\ 7.5\\ 4.0\\ 1.7\\ 1.9\\ 0.0\\ 0.0\\ 0.0\\ 2.0\\ 0.0\end{array}$	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257346_82967101100XerC019748085er7682-6627

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spiked Sample Report

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	102 P14 10.0 P13 P14	30624		Matrix Dilution Extracted Analyzed Injected By	Soil NA 02/26/2014 03/01/2014 BAL		
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	5.59	2796 E	2,3,7,8-TCDF 2,3,7,8-TCDD	-13C	2.00 2.00	77 82
2,3,7,8-TCDD	0.20	0.54	268	1,2,3,7,8-PeC 2,3,4,7,8-PeC 1,2,3,7,8-PeC	DF-13C DD-13C	2.00 2.00 2.00	73 70 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	4.91 8.91	491 891	1,2,3,4,7,8-H 1,2,3,6,7,8-H 2,3,4,6,7,8-H 1,2,3,7,8,9-H	CDF-13C CDF-13C CDF-13C	2.00 2.00 2.00 2.00	92 90 86 85
1,2,3,7,8-PeCDD	1.00	1.92	192	1,2,3,4,7,8-H 1,2,3,6,7,8-H 1,2,3,4,6,7,8- 1,2,3,4,7,8,9-I	CDD-13C HpCDF-13C		80 75 75 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	6.83 6.06 8.25	683 606 825	1,2,3,4,6,7,8-I 1,2,3,4,6,7,8-I OCDD-13C			70 74 79 Y
1,2,3,7,8,9-HxCDF	1.00	1.89	189	1,2,3,4-TCDD 1,2,3,7,8,9-H>		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.88 2.54 2.25	188 254 225	2,3,7,8-TCDD	-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	24.43 1.78	2443 E 178				
1,2,3,4,6,7,8-HpCDD	1.00	8.00	800				
OCDF OCDD	2.00 2.00	7.05 19.55	352 977				

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257346_82967101100XerC019748085er7682-6627

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spiked Sample Report

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	102 P14 10. P13 P14	30624		Matrix Dilution Extracted Analyzed Injected By	Soil NA 02/26/2014 03/01/2014 BAL		
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	5.58	2791 E	2,3,7,8-TCDF 2,3,7,8-TCDD	-13C	2.00 2.00	80 87
2,3,7,8-TCDD	0.20	0.53	266	1,2,3,7,8-PeC 2,3,4,7,8-PeC 1,2,3,7,8-PeC	DF-13C DD-13C	2.00 2.00 2.00	79 77 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	5.14 8.80	514 880	1,2,3,4,7,8-Hx 1,2,3,6,7,8-Hx 2,3,4,6,7,8-Hx 1,2,3,7,8,9-Hx	CDF-13C CDF-13C CDF-13C	2.00 2.00 2.00 2.00	90 90 86 83
1,2,3,7,8-PeCDD	1.00	1.85	185	1,2,3,4,7,8-Hx 1,2,3,6,7,8-Hx 1,2,3,4,6,7,8-H	CDD-13C HpCDF-13C	2.00 2.00 2.00 2.00	82 74 77 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	6.92 6.11 8.12	692 611 812	1,2,3,4,7,8,9-I 1,2,3,4,6,7,8-I OCDD-13C			81 88 Y
1,2,3,7,8,9-HxCDF	1.00	1.94	194	1,2,3,4-TCDD 1,2,3,7,8,9-Hx		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.98 2.58 2.40	198 258 240	2,3,7,8-TCDD	-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	24.04 1.82	2404 E 182				
1,2,3,4,6,7,8-HpCDD	1.00	7.85	785				
OCDF OCDD	2.00 2.00	7.18 19.02	359 951				

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257346_82967101100XerC019748085er7682-6627

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spike Sample Results

Client - ESN Pacific

Client Sample ID	RHS-DU-1.2			Dry Weights	
Lab Sample ID	10257346002-S	Sample Filename	P140301A_06	Sample Amount	9.33 g
MS ID	10257346002-S-MS	MS Filename	P140301A_02	MS Amount	9.2 g
MSD ID	10257346002-S-MSD	MSD Filename	P140301A_03	MSD Amount	9.2 g

	Sample Conc.	MS/MSD Qs	MS Qm	MSD Qm		Backgrou	nd Subtracted	
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	630.003	0.20	5.59	5.58	0.2	0	0	0.0
2,3,7,8-TCDD	38.298	0.20	0.54	0.53	0.6	93	89	3.6
1,2,3,7,8-PeCDF	471.535	1.00	4.91	5.14	4.7	59	79	27.8
2,3,4,7,8-PeCDF	969.248	1.00	8.91	8.80	1.2	4	0	200.0
1,2,3,7,8-PeCDD	117.881	1.00	1.92	1.85	3.8	84	76	10.3
1,2,3,4,7,8-HxCDF	872.673	1.00	6.83	6.92	1.3	0	0	0.0
1,2,3,6,7,8-HxCDF	740.624	1.00	6.06	6.11	0.9	0	0	0.0
2,3,4,6,7,8-HxCDF	1019.369	1.00	8.25	8.12	1.6	0	0	0.0
1,2,3,7,8,9-HxCDF	121.000	1.00	1.89	1.94	2.5	79	82	4.5
1,2,3,4,7,8-HxCDD	106.051	1.00	1.88	1.98	5.1	91	100	9.3
1,2,3,6,7,8-HxCDD	199.110	1.00	2.54	2.58	1.5	72	74	2.6
1,2,3,7,8,9-HxCDD	154.994	1.00	2.25	2.40	6.3	83	97	14.7
1,2,3,4,6,7,8-HpCDF	3233.560	1.00	24.43	24.04	1.6	0	0	0.0
1,2,3,4,7,8,9-HpCDF	104.864	1.00	1.78	1.82	2.2	82	85	3.6
1,2,3,4,6,7,8-HpCDD	849.687	1.00	8.00	7.85	2.0	23	0	200.0
OCDF	562.760	2.00	7.05	7.18	1.9	95	99	4.2
OCDD	1906.520	2.00	19.55	19.02	2.7	105	70	39.9

Definitions

MS = Matrix Spike MSD = Matrix Spike Duplicate Qm = Quantity Measured Qs = Quantity Spiked % Rec. = Percent Recovery RPD = Relative Percent Difference NA = Not Applicable NC = Not Calculated CDD = Chlorinated dibenzo-p-dioxin CDF = Chlorinated dibenzo-p-furan

T = Tetra

Pe = Penta

Hx = Hexa

Hp = Hepta

O = Octa

www.pacelabs.com

Report Prepared for:

Karen Carvallo ESN Pacific 2020-B Kahai Street Honolulu HI 96819

REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Prepared Date: March 6, 2014 Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Report Information:

Pace Project #: 10257348 Sample Receipt Date: 02/11/2014 Client Project #: D1402050037 Client Sub PO #: N/A State Cert #: SLD

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

March 06, 2014

Scott Unze, Project Manager (612) 607-6383 (612) 607-6444 (fax) scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report No.....1025 WWW Garrollcox.com 808-782-6627

Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on seventeen samples submitted by a representative of ESN Pacific. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. The reporting limits were based on signal-to-noise measurements.

The results provided in this report include lower-bound, mid-bound, and upper-bound toxic equivalence (TEQ) results. Lower bound TEQ results include only contributions from positive values in the sample. Mid-bound TEQ results include one-half of the reporting limit in cases where an analyte was not detected, along with contributions from positives in the sample. Upper-bound TEQ results include the full reporting limit in cases where an analyte was not detected, along with contributions from positives and the sample.

Second column confirmation analyses of 2,3,7,8-TCDF values obtained from the primary (DB5-MS) column are performed only when specifically requested for a project and only when the values are above the concentration of the lowest calibration standard. Typical resolution for this isomer using the DB5-MS column ranges from 25-30%.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 47-134%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners; the affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Concentrations below the calibration range were flagged "J" and should be regarded as estimates. Concentrations above the calibration range were flagged "E" and should also be regarded as estimates.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show the blanks to contain trace levels of selected congeners. These levels were below the calibration range of the method. The levels reported for the affected congeners in the field samples were higher than the corresponding blank levels by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

Laboratory and matrix spike samples were also prepared with the sample batches using clean sand or sample matrix that had been fortified with native standard materials. The results show that the spiked native compounds were generally recovered at 89-129% with relative percent differences of 0.0-8.0%. The background-subtracted recovery values obtained for TCDF and OCDD in the matrix spike duplicate were above the 70-130% target range, possibly due to sample inhomogeneity. Matrix spikes were prepared with the 02/26/2014 sample batch using sample material from a separate project; results from these analyses will be provided upon request. Matrix spikes were not prepared with the 02/24/2014 sample batch.

The responses obtained for selected native and labeled congeners in calibration standard analyses U140226B_20, P140301A_15, and U140304B_20 were outside the target ranges. As specified in the method, the averages of the daily response factors for these compounds were used in the calculations for

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

the samples from these runshifts. The affected values were flagged "Y" on the results tables.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10257348_9296

_

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Minnesota	027-053-137
Alabama	40770	Mississippi	MN00064
Alaska	MN00064	Montana	92
Arizona	AZ0014	Nebraska	
Arkansas	88-0680	Nevada	MN_00064_200
California	01155CA	New Jersey (NE	MN002
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 8	8TMS-Q	North Dakota	R-036
Florida (NELAP	E87605	Ohio	4150
Georgia (DNR)	959	Oklahoma	D9922
Guam	959	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN300001-001
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Puerto Rico	MN00064
Indiana	C-MN-01	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Iowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia	9952C
Maryland	322	Wisconsin	999407970
Michigan	9909	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10257348

Report No.....1025

Page 4 of 57

Appendix A

Sample Management

Report No.....1025 348 8-829 Garrollcoxy com/i&0&-782-6627

			Ш	ESN PACIFIC'S	FIC		HAIN	-OF-C	USTOL	CHAIN-OF-CUSTODY RECORD	ORD	ND.	Nas 734B	ŝ
CLIENT: ESN Pacific								ТАТ :	: 10-day					
ADDRESS:_2020-B Kahai S	X Honolul	u, HI 968	19					DATE	E:2-7-14			PAGE_	20F	5
TPHONE:8088470067				EAX:8088470917	0917			ESN	ESN PROJECT #	D1402050037				
EMAIL:_esn@esnpacific.com	F								LOCATION/PROJECT NAME:		_BV - Radford High School	chool		
CLIENT PROJECT #:				Project Manager:		K. Carvallo		COL	COLLECTOR:			DATE COLLECTED	CTED: 2/4-2/5	
0257348_					CECE SUENTY	OF 28 SURE						\backslash		Containers
Sample ID#	Date	Time	Sample Type	Container Type	2117010	\mathbb{N}							Comments	
D1 RHS-DU-17	2/4	1436 so	L	\square	×								48228M	Scol 1
RHS-DU-17.2		1449			×									1
Call RHS-DU-17.3		1502												- CON
D4 RHS-DU-18		1300			× >									
ERHS-DU-20	2/4	1146	-		< < ×									
27 RHS-DU-21		1226			×									207 1
H 8-RHS-DU-22	2/4	1015			×									208 1
P ₉ RHS-DU-23	2/4	1023												1 200
RHS-DU-24	2/4	1050			×			\$						212 1
RHS-DU-25	2/4	1115			×									266 1
112 RHS-DU-26	2/4	1020			×								3	
RHS-DU-26.2	2/4	1059												5
RHS-DU-26.3		1145			×									14-1-
15 RHS-DU-27		1000			×:									1
	2/4	1007			< >									
2-00-0111127		240	1		-		Last	Last Entry						
20					********									
BELINGUISHED BY: (Signaturg) BK. Canallo Via FedexIESN NW	No.	DATE/TIME	1500	RECEIVED BY (Signature)	Signature) RZCC	DATE/TIME ZĮù /l ┥	7-2-4	SAMPLE RECEIPT: TOTAL # OF CONT	SAMPLE RECEIPT: TOTAL # OF CONTAINERS_	17 (of 35)	LABORATORY NOTES:	RY NOTES:		
C RELINQUISHED BY:(Signature)		DATE/TIME		RECEIVED BY (Signature)	Signature)	DATE/TIME		COC SEALS Y / N / NA	5 Y / N / NA		Sample	es MI prepped	Samples MI prepped at ESN Pacific	
57								SEALS INT	SEALS INTACT Y / N / NA					· -
							· · ·	RECEIVED TEMP:	TEMP:			-		

1	Documen Sample Condition U			vised: 07Nov2013 (e 1 of 1	
Pace Analytical	Docume	nt No.:	Issuing	, Authority:	
	F-MN-L-21	.3-rev.08	Pace Minnes	ota Quality Office	
Courier: Fed Ex UPS	USPS C	lient	JO# : 1025	7348	
Tracking Number: 12 V23 U3F	13 9914 44	43 L			
Custody Seal on Cooler/Box Present?	No Seals Ir	itact? Yes	No Optional: P	roj. Due Date: Pro	j. Name:
Packing Material: Bubble Wrap Bub	ble Bags None]Other:	Te	mp Blank? Yes	DNO
	3912167504 Type of Ice:	UWet Y	Blue None Sa	nples on ice, cooling pro	cess has begun
Local	19132501491 Temp Corrected (°C): <u>2</u>		Biological Tissue Fro	zen? Yes IN	
	ction Factor: TLUE	Date and	Initials of Person Examinin		
	,		<u>, Con</u>	iments:	g 3
Chain of Custody Present?	Ves No	N/A 1.		· · · · · · · · · · · · · · · · · · ·	
Chain of Custody Filled Out?		□N/A 2.		94 (m/1971) - 16 - 16 Martin A. 1971) - 17 - 17 - 17 - 17 - 17 - 17 - 17 -	· · · · · · · · · · · · · · · · · · ·
Chain of Custody Relinquished?		$\frac{\prod N/A}{\prod N/A} = \frac{3}{4}$		2. 2011 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 201 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012 - 2012	er maan oran - er V-V-V V-d Heldhickshood
Sampler Name and/or Signature on COC?	Ves No				
Samples Arrived within Hold Time?	Ves LINO	$\square N/A = 5.$			
Short Hold Time Analysis (<72 hr)?	Ves No	<u> </u>			
Rush Turn Around Time Requested?	Yes No	$\square N/A = 7.$		· · · · · · · · · · · · · · · · · · ·	
Sufficient Volume?	Yes No	<u>N/A</u> 8.			**************************************
Correct Containers Used?	Ves No	□N/A 9.			
-Pace Containers Used?	Ves No				
Containers intact?	Ves No	<u> </u>			
Filtered Volume Received for Dissolved Tests?		N/A 11.	No cizte/tim	1 Ab 52: Di	
Sample Labels Match COC?	Yes No	□N/A 12.	NU CRATIN	e on sempl	\mathcal{S}
-includes Date/Time/ID/Analysis Matrix:	3. Lives Live	N/A 13. Sam		H ₂ SO ₄ NaOH	HCC .
compilance with EPA recommendation? (HNO ₅ , H ₂ SO ₄ , HCl<2; NaOH>12)	Ves No	N/A			
Exceptions: VOA, Collform, TOC, Oll and Grease,	Ves No			Lot # of added	
Wi-DRO (water) DOC			al when completed:	preservative:	
Headspace in VOA Vials (>6mm)?	<u>Yes</u> No	N/A 14.			
Trip Blank Present?	Yes No	N/A 15.			
Trip Blank Custody Seals Present? Pace Trip Blank Lot # (if purchased):	Yes No	N/A			
CLIENT NOTIFICATION/RESOLUTION				Required? Yes	INO
· · · · · · · · · · · · · · · · · · ·	n yan na ar ta ta an	Date/	Time:		
Comments/Resolution:					Ъ.
	n an an an Anna	ana ana amin'ny sorana mandridri de 2014 de dia ang	a ta	n de nomen en anticipa de la companya de la compa	a ganggana a taga na ana ang kana na ang kangkangkan
	₩100 € \$4 - 1894 1997 - 1995 1995 1995 1995 1995 1995 1995 19				
			aan maadaa ahaa ahaa ahaa ahaa ahaa bada bada		na na transmiser e an an meine ann traisliúite bhliachta
	•		1	1	
Project Manager Review:	()		Date: 02/11	14	
te: When ever there is a discrepancy affecting North		, a copy of this for		olina DEHNR Certification	Office live out o
 d. Incorrect preservative, out of temp, incorrect cost 	ntaihers)			· · · ·	
				4.4	

Report No.....1025 348 8296 arrollcox.com 808-782-6627

> Tel: 612-607-1700 Fax: 612- 607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

REPORT OF LABORATORY ANALYSIS

Report No.....10257348

This report shall not be reproduced, except in full, Report No.....10257348_8290

Page 8 of 57

Appendix B

Sample Analysis Summary

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 U144 BAL 10.2 11.0 9.08 U144 U144	g)224	U140226B_;	Matrix Dilution Collected Received 20 Extracted Analyzed	Soil NA 02/04/201 02/11/201 02/24/201 02/27/201	4 09:07 4 21:00	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	190.0 5000.0		0.26 0.26 E	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-1		2.00 2.00 2.00	86 Y 91 96 Y
2,3,7,8-TCDD Total TCDD	9.7 290.0		0.17 Y 0.17 Y	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C	2.00 2.00	92 Y 91 Y
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	130.0 250.0 3100.0		0.51 0.55 0.53	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	-13C -13C -13C	2.00 2.00 2.00 2.00	102 104 101 95
1,2,3,7,8-PeCDD Total PeCDD	34.0 430.0		0.29 0.29	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD	-13C)F-13C	2.00 2.00 2.00 2.00	80 73 68 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	170.0 190.0	150	0.34 0.34 P 0.29	1,2,3,4,6,7,8-HpCD 0CDD-13C		2.00 2.00 4.00	66 85
1,2,3,7,8,9-HxCDF Total HxCDF	33.0 1700.0		0.29 0.55 0.38	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	30.0 71.0 62.0 850.0		0.40 0.61 0.35 0.46	2,3,7,8-TCDD-37C	14	0.20	102
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	480.0 35.0 880.0	 	0.28 0.44 0.36	Total 2,3,7,8-TCDE Equivalence: 230 n (Using 2005 WHO	g/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	1000.0 2000.0		0.77 0.77				
OCDF OCDD	650.0 6900.0		0.20 Y 0.29 E				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_82

Page 10 of 57

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	RHS-DU-17 10257348001-S U140226B_16 BAL 10.2 g 11.0 9.08 g U140224 U140226B_06 & U140226B_20 BLANK-39446			Matrix Soil Dilution NA Collected 02/04/2014 14:36 Received 02/11/2014 09:07 Extracted 02/24/2014 21:00 Analyzed 02/27/2014 05:14		
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	МВ	UB
2,3,7,8-TCDF	190.0	0.26	0.10000	19.4520	19.4520	19.4520
Total TCDF	5000.0	0.26	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	9.7	0.17	1.00000	9.6688	9.6688	9.6688
Total TCDD	290.0	0.17	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	130.0	0.51	0.03000	3.8938	3.8938	3.8938
2,3,4,7,8-PeCDF	250.0	0.55	0.30000	75.6271	75.6271	75.6271
Total PeCDF	3100.0	0.53	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	34.0	0.29	1.00000	34.1050	34.1050	34.1050
Total PeCDD	430.0	0.29	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	170.0	0.34	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\\ \end{array}$	16.7288	16.7288	16.7288
1,2,3,6,7,8-HxCDF	ND	0.34		15.0064	15.0064	15.0064
2,3,4,6,7,8-HxCDF	190.0	0.29		19.3926	19.3926	19.3926
1,2,3,7,8,9-HxCDF	33.0	0.55		3.3375	3.3375	3.3375
Total HxCDF	1700.0	0.38		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	30.0	0.40	0.10000	3.0218	3.0218	3.0218
1,2,3,6,7,8-HxCDD	71.0	0.61	0.10000	7.1371	7.1371	7.1371
1,2,3,7,8,9-HxCDD	62.0	0.35	0.10000	6.1690	6.1690	6.1690
Total HxCDD	850.0	0.46	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	480.0	0.28	0.01000	4.7697	4.7697	4.7697
1,2,3,4,7,8,9-HpCDF	35.0	0.44	0.01000	0.3527	0.3527	0.3527
Total HpCDF	880.0	0.36	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	1000.0	0.77	0.01000	10.4521	10.4521	10.4521
Total HpCDD	2000.0	0.77	0.00000	0.0000	0.0000	0.0000
OCDF	650.0	0.20	0.00030	0.1955	0.1955	0.1955
OCDD	6900.0	0.29	0.00030	2.0742	2.0742	2.0742
				000	000	000

230 ng/Kg 230 ng/Kg 230 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_82

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

DU 47 0

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.3 7.8 9.50 P130 P140	g)624	P140301A_	Dilution Collected Received 15 Extracted	Soil NA 02/04/201 02/11/201 02/26/201 03/01/201	4 09:07 4 21:30	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	270 6500		0.98 0.98 E	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13	30	2.00 2.00 2.00	73 79 66
2,3,7,8-TCDD Total TCDD	15 400		1.00 1.00	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1 1,2,3,4,7,8-HxCDF-	3C 3C	2.00 2.00 2.00 2.00	64 65 89
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	200 350 3900		2.80 3.50 3.20	1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF-	-13C -13C	2.00 2.00 2.00 2.00	85 82 74
1,2,3,7,8-PeCDD Total PeCDD	38 480		1.20 1.20	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	-13C -13C	2.00 2.00 2.00	81 70 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	220 130		1.50 2.10	1,2,3,4,7,8,9-HpCD 1,2,3,4,6,7,8-HpCD OCDD-13C		2.00 2.00 4.00	65 71 70 Y
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	270 42 2300		2.00 2.90 2.10	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	33 70 55 790		1.90 1.80 2.50 2.10	2,3,7,8-TCDD-37CI	4	0.20	115
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	810 40 1200	 	1.70 3.40 2.50	Total 2,3,7,8-TCDD Equivalence: 290 n (Using 2005 WHO	g/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	970 1900		3.50 3.50				
OCDF OCDD	570 6200		2.20 2.70 E				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_829671101100XerC019948085er7682-6627

> Tel: 612-607-1700 Fax: 612- 607-6444

CDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14030 BAL 10.3 g 7.8 9.50 g P13062	48002-S 01A_08 24 28B_19 & P	140301A_15	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 1 02/11/2014 0 02/26/2014 2 03/01/2014 1	9:07 1:30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	270	0.98	0.10000	27.3743	27.3743	27.3743
Total TCDF	6500	0.98	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	15	1.00	1.00000	14.5551	14.5551	14.5551
Total TCDD	400	1.00	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	200	2.8	0.03000	6.0424	6.0424	6.0424
2,3,4,7,8-PeCDF	350	3.5	0.30000	104.3071	104.3071	104.3071
Total PeCDF	3900	3.2	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	38	1.2	1.00000	37.5398	37.5398	37.5398
Total PeCDD	480	1.2	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	220	1.5	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\\ \end{array}$	21.7027	21.7027	21.7027
1,2,3,6,7,8-HxCDF	130	2.1		12.7962	12.7962	12.7962
2,3,4,6,7,8-HxCDF	270	2.0		26.9467	26.9467	26.9467
1,2,3,7,8,9-HxCDF	42	2.9		4.1947	4.1947	4.1947
Total HxCDF	2300	2.1		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	33	1.9	0.10000	3.2895	3.2895	3.2895
1,2,3,6,7,8-HxCDD	70	1.8	0.10000	7.0085	7.0085	7.0085
1,2,3,7,8,9-HxCDD	55	2.5	0.10000	5.4564	5.4564	5.4564
Total HxCDD	790	2.1	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	810	1.7	0.01000	8.0837	8.0837	8.0837
1,2,3,4,7,8,9-HpCDF	40	3.4	0.01000	0.3984	0.3984	0.3984
Total HpCDF	1200	2.5	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	970	3.5	0.01000	9.6899	9.6899	9.6899
Total HpCDD	1900	3.5	0.00000	0.0000	0.0000	0.0000
OCDF	570	2.2	0.00030	0.1702	0.1702	0.1702
OCDD	6200	2.7	0.00030	1.8702	1.8702	1.8702
				290 ng/Kg	290 ng/Kg	290 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in

garrollcox.com 808-782-6627 Report No.....10257348_82

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8	3290 Samp	le Analysis	s Results
----------	-----------	-------------	-----------

Client - ESN Pacific

DUL 47 0

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.2 9.0 9.28 P130 P140	g g 0624	P140301A_	Dilution Collected Received 15 Extracted	Soil NA 02/04/2014 02/11/2014 02/26/2014 03/01/2014	09:07 21:30	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's dded	Percent Recovery
2,3,7,8-TCDF Total TCDF	260 5100		0.33 0.33 E	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13	:	2.00 2.00 2.00	73 68 61
2,3,7,8-TCDD Total TCDD	 430	12	0.28 I 0.28	2,3,4,7,8-PeCDF-13 1,2,3,7,8-PeCDD-13	3C 2 3C 2	2.00 2.00	71 77 115
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	180 320 3800	 	1.40 0.60 1.00	1,2,3,4,7,8-HxCDF- 1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF- 1,2,3,4,7,8-HxCDD-	13C 2 13C 2 13C 2	2.00 2.00 2.00 2.00 2.00 2.00	107 100 55 98
1,2,3,7,8-PeCDD Total PeCDD	34 410		0.38 0.38	1,2,3,6,7,8-HxCDD- 1,2,3,4,6,7,8-HxCDD- 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD	-13C 2 F-13C 2	2.00 2.00 2.00 2.00	90 85 70 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	190 270	200	0.71 0.53 P 0.60	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C 2	2.00 4.00	71 49 Y
1,2,3,7,8,9-HxCDF Total HxCDF	39 2300		0.68 0.63	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	34 80 53 440		1.10 0.95 0.87 0.98	2,3,7,8-TCDD-37Cl	4 (0.20	133
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	840 41 1300		0.63 0.81 0.72	Total 2,3,7,8-TCDD Equivalence: 280 no (Using 2005 WHO i	g/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	1300 2600		0.80 0.80				
OCDF OCDD	730 9700		1.40 1.20 E				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_829671101100XerC019948085er7682-6627

Page 14 of 57

ND = Not Detected NA = Not Applicable

NC = Not Calculated

> Tel: 612-607-1700 Fax: 612- 607-6444

CDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P14030 BAL 10.2 g 9.0 9.28 g P13062	48003-S 01A_09 24 28B_19 & P	140301A_15	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 1: 02/11/2014 0: 02/26/2014 2 03/01/2014 1:	9:07 1:30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	260	0.33	0.10000	25.6769	25.6769	25.6769
Total TCDF	5100	0.33	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.28	1.00000	11.8140	11.8140	11.8140
Total TCDD	430	0.28	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	180	1.4	0.03000	5.2986	5.2986	5.2986
2,3,4,7,8-PeCDF	320	0.60	0.30000	95.6536	95.6536	95.6536
Total PeCDF	3800	1.0	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	34	0.38	1.00000	34.3129	34.3129	34.3129
Total PeCDD	410	0.38	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	190	0.71	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\\ \end{array}$	18.6103	18.6103	18.6103
1,2,3,6,7,8-HxCDF	ND	0.53		20.4754	20.4754	20.4754
2,3,4,6,7,8-HxCDF	270	0.60		27.4135	27.4135	27.4135
1,2,3,7,8,9-HxCDF	39	0.68		3.9382	3.9382	3.9382
Total HxCDF	2300	0.63		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	34	1.1	0.10000	3.4311	3.4311	3.4311
1,2,3,6,7,8-HxCDD	80	0.95	0.10000	7.9997	7.9997	7.9997
1,2,3,7,8,9-HxCDD	53	0.87	0.10000	5.2647	5.2647	5.2647
Total HxCDD	440	0.98	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	840	0.63	0.01000	8.3920	8.3920	8.3920
1,2,3,4,7,8,9-HpCDF	41	0.81	0.01000	0.4076	0.4076	0.4076
Total HpCDF	1300	0.72	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	1300	0.80	0.01000	12.5752	12.5752	12.5752
Total HpCDD	2600	0.80	0.00000	0.0000	0.0000	0.0000
OCDF	730	1.4	0.00030	0.2191	0.2191	0.2191
OCDD	9700	1.2	0.00030	2.9066	2.9066	2.9066
				280 ng/Kg	280 ng/Kg	280 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in

garrollcox.com 808-782-6627 Report No.....10257348_82

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.3 9.5 9.32 P130 P140	g)624	P140301A_	Matrix Dilution Collected Received 15 Extracted Analyzed	02/11/20 02/26/20	14 13:00 14 09:07 14 21:30 14 13:37	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	570 11000		0.45 E 0.45 E	2,3,7,8-TCDF-130 2,3,7,8-TCDD-130 1,2,3,7,8-PeCDF-	2	2.00 2.00 2.00	80 87 78
2,3,7,8-TCDD Total TCDD	28 1200		0.49 0.49	2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00	75 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	410 800 8500		0.77 1.80 1.30	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 2,3,4,6,7,8-HxCDI 1,2,3,7,8,9-HxCDI	=-13C =-13C =-13C	2.00 2.00 2.00 2.00 2.00	99 96 91 72 87
1,2,3,7,8-PeCDD Total PeCDD	90 1400		0.44 0.44	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 1,2,3,4,6,7,8-HpC 1,2,3,4,7,8,9-HpC	D-13C DF-13C	2.00 2.00 2.00 2.00	87 77 75 68
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	570 420 730		0.90 1.50 1.20	1,2,3,4,6,7,8-HpC 1,2,3,4,6,7,8-HpC OCDD-13C		2.00 2.00 4.00	08 77 69 Y
1,2,3,7,8,9-HxCDF Total HxCDF	100 6000		1.20 1.00 1.20	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	84 160 130 2100		1.40 1.40 1.10 1.30	2,3,7,8-TCDD-370	CI4	0.20	104
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2400 88 3100		0.84 E 1.30 1.10 E	Total 2,3,7,8-TCD Equivalence: 690 (Using 2005 WHC	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	1800 3600		2.00 2.00				
OCDF OCDD	850 11000		1.10 1.80 E				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

Report No.....10257348_82

RL = Reporting Limit.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

> Tel: 612-607-1700 Fax: 612- 607-6444

-TCDD Toxic Equivalency (TEQ) Calculations 8

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	RHS-DU-18 10257348004-S P140301A_10 BAL 10.3 g 9.5 9.32 g P130624 P140228B_19 & P140301A_15 BLANK-39465			MatrixSoilDilutionNACollected02/04/2014Received02/11/201402/26/201421:30Analyzed03/01/201413:37		
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	МВ	UB
2,3,7,8-TCDF	570	0.45	0.10000	56.6262	56.6262	56.6262
Total TCDF	11000	0.45	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	28	0.49	1.00000	28.3706	28.3706	28.3706
Total TCDD	1200	0.49	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	410	0.77	0.03000	12.2387	12.2387	12.2387
2,3,4,7,8-PeCDF	800	1.8	0.30000	239.9010	239.9010	239.9010
Total PeCDF	8500	1.3	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	90	0.44	1.00000	89.8140	89.8140	89.8140
Total PeCDD	1400	0.44	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	570	0.90	0.10000	56.8898	56.8898	56.8898
1,2,3,6,7,8-HxCDF	420	1.5	0.10000	41.5281	41.5281	41.5281
2,3,4,6,7,8-HxCDF	730	1.2	0.10000	73.2362	73.2362	73.2362
1,2,3,7,8,9-HxCDF	100	1.0	0.10000	9.9793	9.9793	9.9793
Total HxCDF	6000	1.2	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	84	1.4	0.10000	8.4178	8.4178	8.4178
1,2,3,6,7,8-HxCDD	160	1.4	0.10000	16.3243	16.3243	16.3243
1,2,3,7,8,9-HxCDD	130	1.1	0.10000	13.0199	13.0199	13.0199
Total HxCDD	2100	1.3	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	2400	0.84	0.01000	23.8558	23.8558	23.8558
1,2,3,4,7,8,9-HpCDF	88	1.3	0.01000	0.8779	0.8779	0.8779
Total HpCDF	3100	1.1	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	1800	2.0	0.01000	17.5083	17.5083	17.5083
Total HpCDD	3600	2.0	0.00000	0.0000	0.0000	0.0000
OCDF	850	1.1	0.00030	0.2556	0.2556	0.2556
OCDD	11000	1.8	0.00030	3.1712	3.1712	3.1712
				690 ng/Kg	690 ng/Kg	690 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_82

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 P140 BAL 10.3 7.7 9.51 P130 P140	g)624	• P140301A_	Matrix Dilution Collected Received 15 Extracted Analyzed	02/11/20 02/26/20	14 14:22 14 09:07 14 21:30 14 14:20	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	6800	370	0.18 P 0.18 E	2,3,7,8-TCDF-130 2,3,7,8-TCDD-130	C	2.00 2.00	73 79 72
2,3,7,8-TCDD Total TCDD	23 750		0.18 0.18	1,2,3,7,8-PeCDF- 2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00 2.00	73 70 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	300 610 6500	 	0.44 0.63 0.53	1,2,3,4,7,8-HxCD 1,2,3,6,7,8-HxCD 2,3,4,6,7,8-HxCD 1,2,3,7,8,9-HxCD	F-13C F-13C F-13C	2.00 2.00 2.00 2.00	92 88 82 52
1,2,3,7,8-PeCDD Total PeCDD	72 970		0.23 0.23	1,2,3,4,7,8-HxCD 1,2,3,6,7,8-HxCD 1,2,3,4,6,7,8-HxCD	D-13C DF-13C	2.00 2.00 2.00	83 71 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	410 390		0.67 0.98	1,2,3,4,7,8,9-HpC 1,2,3,4,6,7,8-HpC OCDD-13C		2.00 2.00 4.00	56 63 47 Y
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	600 83 4500		1.20 0.80 0.90	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCD		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	68 120 99 1500		1.60 0.77 0.64 1.00	2,3,7,8-TCDD-370	CI4	0.20	88
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2100 87 2700	 	0.61 0.96 0.78	Total 2,3,7,8-TCD Equivalence: 540 (Using 2005 WHC	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	1200 2400		1.40 1.40				
OCDF OCDD	690 5600		1.00 1.10				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

RL = Reporting Limit.

E = Exceeds calibration range

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_829671101100XerC019948085er7682-6627

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	RHS-DU-19 10257348005-S P140301A_11 BAL 10.3 g 7.7 9.51 g P130624 P140228B_19 & P140301A_15 BLANK-39465			Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 1 02/11/2014 0 02/26/2014 2 03/01/2014 1	9:07 1:30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	ND	0.18	0.10000	36.7462	36.7462	36.7462
Total TCDF	6800	0.18	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	23	0.18	1.00000	23.1303	23.1303	23.1303
Total TCDD	750	0.18	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	300	0.44	0.03000	9.1296	9.1296	9.1296
2,3,4,7,8-PeCDF	610	0.63	0.30000	182.6852	182.6852	182.6852
Total PeCDF	6500	0.53	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	72	0.23	1.00000	72.4801	72.4801	72.4801
Total PeCDD	970	0.23	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	410	0.67	0.10000	41.3009	41.3009	41.3009
1,2,3,6,7,8-HxCDF	390	0.98	0.10000	38.6998	38.6998	38.6998
2,3,4,6,7,8-HxCDF	600	1.2	0.10000	60.3981	60.3981	60.3981
1,2,3,7,8,9-HxCDF	83	0.80	0.10000	8.2573	8.2573	8.2573
Total HxCDF	4500	0.90	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	68	1.6	0.10000	6.7685	6.7685	6.7685
1,2,3,6,7,8-HxCDD	120	0.77	0.10000	12.2455	12.2455	12.2455
1,2,3,7,8,9-HxCDD	99	0.64	0.10000	9.9064	9.9064	9.9064
Total HxCDD	1500	1.00	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	2100	0.61	0.01000	20.7621	20.7621	20.7621
1,2,3,4,7,8,9-HpCDF	87	0.96	0.01000	0.8747	0.8747	0.8747
Total HpCDF	2700	0.78	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	1200	1.4	0.01000	11.6360	11.6360	11.6360
Total HpCDD	2400	1.4	0.00000	0.0000	0.0000	0.0000
OCDF	690	1.0	0.00030	0.2064	0.2064	0.2064
OCDD	5600	1.1	0.00030	1.6893	1.6893	1.6893
				540 ng/Kg	540 ng/Kg	540 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_82

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 U144 SMT 10.0 15.1 8.49 U144 U144	g g 0224	U140304B_	Dilution I Collected 0 Received 0 20 Extracted 0	Soil NA 02/04/2014 11:46 02/11/2014 09:07 02/27/2014 19:30 03/04/2014 21:10	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	9.10 240.00		0.16 0.16	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13	2.00 2.00 C 2.00	96 100 107
2,3,7,8-TCDD Total TCDD	0.40 8.50		0.16 J 0.16	2,3,4,7,8-PeCDF-13 1,2,3,7,8-PeCDF-13 1,2,3,4,7,8-PeCDD-13 1,2,3,4,7,8-HxCDF-	C 2.00 BC 2.00	83 Y 113 89
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	9.60 21.00 270.00	 	0.25 0.27 0.26	1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF- 1,2,3,4,7,8-HxCDF-	13C2.0013C2.0013C2.00	97 103 94 81
1,2,3,7,8-PeCDD Total PeCDD	18.00	2.3	0.15 IJ 0.15	1,2,3,6,7,8-HxCDD- 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	13C 2.00 -13C 2.00	80 80 81
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	16.00 18.00 20.00	=	0.38 0.26 0.28	1,2,3,4,6,7,8-HpCDI OCDD-13C		89 77
1,2,3,7,8,9-HxCDF Total HxCDF	3.30 200.00		0.29 J 0.30	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-	2.00 13C 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.50 7.20 4.80 64.00		0.37 J 0.52 0.28 J 0.39	2,3,7,8-TCDD-37Cl4	4 0.20	100
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	72.00 3.90 120.00	 	0.16 0.33 J 0.24	Total 2,3,7,8-TCDD Equivalence: 19 ng/l (Using 2005 WHO F		
1,2,3,4,6,7,8-HpCDD Total HpCDD	100.00 190.00		0.44 0.44			
OCDF OCDD	62.00 670.00		0.30 0.39			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

NA = Not Applicable NC = Not Calculated

ND = Not Detected

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_829671101100XerC019948085er7682-6627

Page 20 of 57

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	RHS-DU-20 10257348006-S U140304B_07 SMT 10.0 g 15.1 8.49 g U140224 U140304B_02 & U140304B_20 BLANK-39477		Matrix Dilution Collected Received Extracted Analyzed	:46 :07 :30 :10		
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	9.10	0.16	0.10000	0.9118	0.9118	0.9118
Total TCDF	240.00	0.16	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	0.40	0.16	1.00000	0.4016	0.4016	0.4016
Total TCDD	8.50	0.16	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	9.60	0.25	0.03000	0.2878	0.2878	0.2878
2,3,4,7,8-PeCDF	21.00	0.27	0.30000	6.3737	6.3737	6.3737
Total PeCDF	270.00	0.26	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	ND	0.15	1.00000	2.3376	2.3376	2.3376
Total PeCDD	18.00	0.15	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	16.00	0.38	0.10000	1.6158	1.6158	1.6158
1,2,3,6,7,8-HxCDF	18.00	0.26	0.10000	1.7658	1.7658	1.7658
2,3,4,6,7,8-HxCDF	20.00	0.28	0.10000	1.9601	1.9601	1.9601
1,2,3,7,8,9-HxCDF	3.30	0.29	0.10000	0.3292	0.3292	0.3292
Total HxCDF	200.00	0.30	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	2.50	0.37	0.10000	0.2476	0.2476	0.2476
1,2,3,6,7,8-HxCDD	7.20	0.52	0.10000	0.7186	0.7186	0.7186
1,2,3,7,8,9-HxCDD	4.80	0.28	0.10000	0.4806	0.4806	0.4806
Total HxCDD	64.00	0.39	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	72.00	0.16	0.01000	0.7244	0.7244	0.7244
1,2,3,4,7,8,9-HpCDF	3.90	0.33	0.01000	0.0394	0.0394	0.0394
Total HpCDF	120.00	0.24	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	100.00	0.44	0.01000	1.0448	1.0448	1.0448
Total HpCDD	190.00	0.44	0.00000	0.0000	0.0000	0.0000
OCDF	62.00	0.30	0.00030	0.0186	0.0186	0.0186
OCDD	670.00	0.39	0.00030	0.2002	0.2002	0.2002
				19 ng/Kg	19 ng/Kg	19 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_82

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 U144 SMT 10.5 11.2 9.32 U140 U140	g g)224	U140304B_	Received 20 Extracted	Soil NA 02/04/20 ² 02/11/20 ² 02/27/20 ² 03/04/20 ²	14 09:07 14 19:30	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	8.5 220.0		0.32 0.32	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13	20	2.00 2.00 2.00	97 101 110
2,3,7,8-TCDD Total TCDD	8.8	0.35	0.26 IJ 0.26	2,3,4,7,8-PeCDF-1: 1,2,3,7,8-PeCDD-1	3C 3C	2.00 2.00	88 Y 114
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	8.6 20.0 230.0	 	0.22 0.22 0.22	1,2,3,4,7,8-HxCDF- 1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF- 1,2,3,4,7,8-HxCDD	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00	94 98 105 93 83
1,2,3,7,8-PeCDD Total PeCDD	2.2 19.0		0.16 J 0.16	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD	-13C 9F-13C	2.00 2.00 2.00 2.00	80 80 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	14.0 15.0 19.0		0.45 0.39 0.31	1,2,3,4,6,7,8-HpCD 0CDD-13C	D-13C	2.00 2.00 4.00	90 76
1,2,3,7,8,9-HxCDF Total HxCDF	180.0	2.60	0.39 IJ 0.38	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.1 6.5 5.1 64.0		0.40 J 0.37 0.39 J 0.39	2,3,7,8-TCDD-37CI	4	0.20	99
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	68.0 3.4 110.0		0.28 0.37 J 0.32	Total 2,3,7,8-TCDD Equivalence: 18 ng, (Using 2005 WHO	/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	94.0 170.0		0.40 0.40				
OCDF OCDD	58.0 620.0		0.44 0.58				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_829671101100XerC019948085er7682-6627

Page 22 of 57

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	RHS-DU-21 10257348007-S U140304B_08 SMT 10.5 g 11.2 9.32 g U140224 U140304B_02 & U140304B_20 BLANK-39477		Matrix Dilution Collected Received Extracted Analyzed	2:26 0:07 0:30 :54		
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	8.5	0.32	0.10000	0.8454	0.8454	0.8454
Total TCDF	220.0	0.32	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.26	1.00000	0.3533	0.3533	0.3533
Total TCDD	8.8	0.26	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	8.6	0.22	0.03000	0.2590	0.2590	0.2590
2,3,4,7,8-PeCDF	20.0	0.22	0.30000	5.9384	5.9384	5.9384
Total PeCDF	230.0	0.22	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	2.2	0.16	1.00000	2.2467	2.2467	2.2467
Total PeCDD	19.0	0.16	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	14.0	0.45	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\end{array}$	1.4476	1.4476	1.4476
1,2,3,6,7,8-HxCDF	15.0	0.39		1.5036	1.5036	1.5036
2,3,4,6,7,8-HxCDF	19.0	0.31		1.8663	1.8663	1.8663
1,2,3,7,8,9-HxCDF	ND	0.39		0.2636	0.2636	0.2636
Total HxCDF	180.0	0.38		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	2.1	0.40	0.10000	0.2106	0.2106	0.2106
1,2,3,6,7,8-HxCDD	6.5	0.37	0.10000	0.6453	0.6453	0.6453
1,2,3,7,8,9-HxCDD	5.1	0.39	0.10000	0.5101	0.5101	0.5101
Total HxCDD	64.0	0.39	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	68.0	0.28	0.01000	0.6767	0.6767	0.6767
1,2,3,4,7,8,9-HpCDF	3.4	0.37	0.01000	0.0339	0.0339	0.0339
Total HpCDF	110.0	0.32	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	94.0	0.40	0.01000	0.9413	0.9413	0.9413
Total HpCDD	170.0	0.40	0.00000	0.0000	0.0000	0.0000
OCDF	58.0	0.44	0.00030	0.0173	0.0173	0.0173
OCDD	620.0	0.58	0.00030	0.1846	0.1846	0.1846
				18 ng/Kg	18 ng/Kg	18 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_82

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290	Sample Analy	ysis Results
-------------	--------------	--------------

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 U14 BAL 10.5 9.9 9.46 U14 U14	g g 0224	U140226B_;	Matrix Dilution Collected Received 20 Extracted Analyzed	02/11/20	14 10:15 14 09:07 14 21:00 14 06:01	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	15.0 440.0		0.27 0.27	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2	2.00 2.00	87 Y 91 94 Y
2,3,7,8-TCDD Total TCDD	1.1 45.0		0.14 Y 0.14 Y	1,2,3,7,8-PeCDF- 2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00 2.00	89 Y 94 Y
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	15.0 36.0 450.0	 	0.23 0.17 0.20	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	-13C -13C -13C	2.00 2.00 2.00 2.00	102 100 99 91
1,2,3,7,8-PeCDD Total PeCDD	4.8 89.0		0.30 J 0.30	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 1,2,3,4,6,7,8-HpCI	D-13C DF-13C	2.00 2.00 2.00	83 75 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	31.0	 31	0.22 0.20 P	1,2,3,4,7,8,9-HpCl 1,2,3,4,6,7,8-HpCl OCDD-13C		2.00 2.00 4.00	59 60 63
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	39.0 6.8 380.0		0.15 0.18 0.19	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.7 19.0 12.0 220.0		0.37 0.32 0.36 0.35	2,3,7,8-TCDD-370	214	0.20	101
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	150.0 9.7 290.0	 	0.24 0.20 0.22	Total 2,3,7,8-TCD Equivalence: 39 no (Using 2005 WHC	g/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	300.0 560.0		0.66 0.66				
OCDF OCDD	170.0 3000.0		0.48 Y 0.48				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

This report shall not be reproduced, except in full, Report No.....10257348_829671101100XerC019948085er7682-6627

> Tel: 612-607-1700 Fax: 612- 607-6444

-TCDD Toxic Equivalency (TEQ) Calculations 8

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	RHS-DU-22 10257348008-S U140226B_17 BAL 10.5 g 9.9 9.46 g U140224 U140226B_06 & U140226B_20 BLANK-39446			Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 10 02/11/2014 09 02/24/2014 21 02/27/2014 06):07 :00
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	15.0	0.27	0.10000	1.5439	1.5439	1.5439
Total TCDF	440.0	0.27	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	1.1	0.14	1.00000	1.0975	1.0975	1.0975
Total TCDD	45.0	0.14	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	15.0	0.23	0.03000	0.4583	0.4583	0.4583
2,3,4,7,8-PeCDF	36.0	0.17	0.30000	10.9110	10.9110	10.9110
Total PeCDF	450.0	0.20	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	4.8	0.30	1.00000	4.7781	4.7781	4.7781
Total PeCDD	89.0	0.30	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	31.0	0.22	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\end{array}$	3.0775	3.0775	3.0775
1,2,3,6,7,8-HxCDF	ND	0.20		3.1058	3.1058	3.1058
2,3,4,6,7,8-HxCDF	39.0	0.15		3.8650	3.8650	3.8650
1,2,3,7,8,9-HxCDF	6.8	0.18		0.6755	0.6755	0.6755
Total HxCDF	380.0	0.19		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	5.7	0.37	0.10000	0.5663	0.5663	0.5663
1,2,3,6,7,8-HxCDD	19.0	0.32	0.10000	1.9266	1.9266	1.9266
1,2,3,7,8,9-HxCDD	12.0	0.36	0.10000	1.2018	1.2018	1.2018
Total HxCDD	220.0	0.35	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	150.0	0.24	0.01000	1.4927	1.4927	1.4927
1,2,3,4,7,8,9-HpCDF	9.7	0.20	0.01000	0.0974	0.0974	0.0974
Total HpCDF	290.0	0.22	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	300.0	0.66	0.01000	2.9534	2.9534	2.9534
Total HpCDD	560.0	0.66	0.00000	0.0000	0.0000	0.0000
OCDF	170.0	0.48	0.00030	0.0519	0.0519	0.0519
OCDD	3000.0	0.48	0.00030	0.8973	0.8973	0.8973
				39 ng/Kg	39 ng/Kg	39 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 U14(SMT 10.4 11.6 9.19 U14(U14(g g)224	U140304B_	Matrix Dilution Collected Received 20 Extracted Analyzed	02/11/20 02/27/20	14 10:23 14 09:07 14 19:30 14 22:39	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	8.6 220.0		0.36 0.36	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-1	20	2.00 2.00 2.00	96 99 112
2,3,7,8-TCDD Total TCDD	 11.0	0.43	0.40 IJ 0.40	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C	2.00 2.00	86 Y 113
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	9.0 19.0 240.0	 	0.15 0.20 0.18	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00	93 101 105 95 87
1,2,3,7,8-PeCDD Total PeCDD	2.0 26.0		0.15 J 0.15	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD)-13C)F-13C	2.00 2.00 2.00 2.00	79 80 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	16.0 16.0 18.0		0.48 0.24 0.21	1,2,3,4,7,8,9-HpCE 1,2,3,4,6,7,8-HpCE OCDD-13C	D-13C	2.00 4.00	91 77
1,2,3,7,8,9-HxCDF Total HxCDF	3.6 190.0		0.31 J 0.31	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.0 7.3 4.8 66.0		0.35 J 0.37 0.32 J 0.35	2,3,7,8-TCDD-37C	14	0.20	97
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	69.0 3.5 110.0		0.30 0.45 J 0.37	Total 2,3,7,8-TCDE Equivalence: 18 ng (Using 2005 WHO	J/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	97.0 180.0		0.50 0.50				
OCDF OCDD	57.0 610.0		0.96 0.59				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

RL = Reporting Limit.

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_829671101100XerC019948085er7682-6627

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	U14030 SMT 10.4 g 11.6 9.19 g U14022	248009-S 04B_09 24 04B_02 & U	140304B_20	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 10 02/11/2014 09 02/27/2014 19 03/04/2014 22	:07 :30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	8.6	0.36	0.10000	0.8634	0.8634	0.8634
Total TCDF	220.0	0.36	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.40	1.00000	0.4348	0.4348	0.4348
Total TCDD	11.0	0.40	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	9.0	0.15	0.03000	0.2689	0.2689	0.2689
2,3,4,7,8-PeCDF	19.0	0.20	0.30000	5.7835	5.7835	5.7835
Total PeCDF	240.0	0.18	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	2.0	0.15	1.00000	2.0346	2.0346	2.0346
Total PeCDD	26.0	0.15	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	16.0	0.48	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\end{array}$	1.6048	1.6048	1.6048
1,2,3,6,7,8-HxCDF	16.0	0.24		1.5691	1.5691	1.5691
2,3,4,6,7,8-HxCDF	18.0	0.21		1.8447	1.8447	1.8447
1,2,3,7,8,9-HxCDF	3.6	0.31		0.3598	0.3598	0.3598
Total HxCDF	190.0	0.31		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	2.0	0.35	0.10000	0.2037	0.2037	0.2037
1,2,3,6,7,8-HxCDD	7.3	0.37	0.10000	0.7264	0.7264	0.7264
1,2,3,7,8,9-HxCDD	4.8	0.32	0.10000	0.4823	0.4823	0.4823
Total HxCDD	66.0	0.35	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	69.0	0.30	0.01000	0.6929	0.6929	0.6929
1,2,3,4,7,8,9-HpCDF	3.5	0.45	0.01000	0.0351	0.0351	0.0351
Total HpCDF	110.0	0.37	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	97.0	0.50	0.01000	0.9730	0.9730	0.9730
Total HpCDD	180.0	0.50	0.00000	0.0000	0.0000	0.0000
OCDF	57.0	0.96	0.00030	0.0171	0.0171	0.0171
OCDD	610.0	0.59	0.00030	0.1825	0.1825	0.1825
				18 ng/Kg	18 ng/Kg	18 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_82

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

D11 0 4

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 U144 SMT 11.4 14.5 9.75 U14 U14	g g 0224	k U140304B_	Dilution Collected Received 20 Extracted	02/11/20 02/27/20	14 10:50 14 09:07 14 19:30 14 23:24	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	8.2 210.0		0.47 0.47	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C		2.00 2.00	97 100
2,3,7,8-TCDD Total TCDD	ND 9.0		0.39 0.39	1,2,3,7,8-PeCDF-13 2,3,4,7,8-PeCDF-13 1,2,3,7,8-PeCDD-13	3C 3C	2.00 2.00 2.00	111 85 Y 114
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	8.3 20.0 230.0	 	0.26 0.20 0.23	1,2,3,4,7,8-HxCDF- 1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF- 1,2,3,4,7,8-HxCDD-	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00	98 97 107 96 86
1,2,3,7,8-PeCDD Total PeCDD	2.1 22.0		0.16 J 0.16	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	-13C F-13C	2.00 2.00 2.00 2.00	80 77 80 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	13.0 15.0 18.0		0.45 0.38 0.38	1,2,3,4,7,8,9-HpCD 1,2,3,4,6,7,8-HpCD OCDD-13C		2.00 2.00 4.00	82 90 76
1,2,3,7,8,9-HxCDF Total HxCDF	170.0	2.5	0.19 IJ 0.35	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	6.9 4.8 61.0	2.0	0.13 IJ 0.35 0.45 J 0.31	2,3,7,8-TCDD-37Cl	4	0.20	104
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	66.0 3.5 110.0		0.30 0.34 J 0.32	Total 2,3,7,8-TCDD Equivalence: 17 ng, (Using 2005 WHO	/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	92.0 170.0		0.50 0.50				
OCDF OCDD	54.0 580.0		0.68 0.58				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

This report shall not be reproduced, except in full, Report No.....10257348_829671101100XerC019948085er7682-6627

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	U14030 SMT 11.4 g 14.5 9.75 g U14022 U14030	948010-S 04B_10 24	140304B_20	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 10 02/11/2014 09 02/27/2014 19 03/04/2014 23):07):30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	8.2	0.47	0.10000	0.8214	0.8214	0.8214
Total TCDF	210.0	0.47	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.39	1.00000	0.0000	0.1959	0.3918
Total TCDD	9.0	0.39	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	8.3	0.26	0.03000	0.2504	0.2504	0.2504
2,3,4,7,8-PeCDF	20.0	0.20	0.30000	5.9093	5.9093	5.9093
Total PeCDF	230.0	0.23	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	2.1	0.16	1.00000	2.1120	2.1120	2.1120
Total PeCDD	22.0	0.16	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	13.0	0.45	0.10000	1.2935	1.2935	1.2935
1,2,3,6,7,8-HxCDF	15.0	0.38	0.10000	1.5347	1.5347	1.5347
2,3,4,6,7,8-HxCDF	18.0	0.38	0.10000	1.8307	1.8307	1.8307
1,2,3,7,8,9-HxCDF	ND	0.19	0.10000	0.2511	0.2511	0.2511
Total HxCDF	170.0	0.35	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	ND	0.13	0.10000	0.1992	0.1992	0.1992
1,2,3,6,7,8-HxCDD	6.9	0.35	0.10000	0.6950	0.6950	0.6950
1,2,3,7,8,9-HxCDD	4.8	0.45	0.10000	0.4797	0.4797	0.4797
Total HxCDD	61.0	0.31	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	66.0	0.30	0.01000	0.6597	0.6597	0.6597
1,2,3,4,7,8,9-HpCDF	3.5	0.34	0.01000	0.0355	0.0355	0.0355
Total HpCDF	110.0	0.32	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	92.0	0.50	0.01000	0.9189	0.9189	0.9189
Total HpCDD	170.0	0.50	0.00000	0.0000	0.0000	0.0000
OCDF	54.0	0.68	0.00030	0.0161	0.0161	0.0161
OCDD	580.0	0.58	0.00030	0.1740	0.1740	0.1740
				17 ng/Kg	17 ng/Kg	18 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

> Tel: 612-607-1700 Fax: 612- 607-6444

Method	8290	Sample	Analy	/sis	Results
--------	------	--------	-------	------	---------

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 U14(SMT 10.0 14.9 8.51 U14(U14(g g)224	U140304B_	Dilution Collected Received 20 Extracted	Soil NA 02/04/201 02/11/201 02/27/201 03/05/201	4 09:07 4 19:30	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	9.5 240.0		0.48 0.48	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13	30	2.00 2.00 2.00	97 102 111
2,3,7,8-TCDD Total TCDD	ND 10.0		0.42 0.42	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1 1,2,3,4,7,8-HxCDF-	3C 3C	2.00 2.00 2.00 2.00	86 Y 116 95
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	9.5 22.0 260.0	 	0.36 0.43 0.40	1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF-	-13C -13C -13C	2.00 2.00 2.00	93 104 96
1,2,3,7,8-PeCDD Total PeCDD	2.5 26.0		0.25 J 0.25	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD	-13C F-13C	2.00 2.00 2.00 2.00	86 79 81 83
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	15.0 18.0 21.0		0.64 0.61 0.53	1,2,3,4,6,7,8-HpCD OCDD-13C		2.00 2.00 4.00	91 75
1,2,3,7,8,9-HxCDF Total HxCDF	3.5 210.0		0.59 J 0.59	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.7 7.6 65.0	4.6	1.00 J 0.44 0.69 IJ 0.72	2,3,7,8-TCDD-37CI	4	0.20	102
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	74.0 3.5 110.0		0.19 0.40 J 0.30	Total 2,3,7,8-TCDD Equivalence: 20 ng, (Using 2005 WHO	/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	110.0 190.0		0.50 0.50				
OCDF OCDD	61.0 660.0		0.86 0.74				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

RL = Reporting Limit.

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

2,3,7,8-TCDD	Toxic Equivalency (TEQ)	Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	U14030 SMT 10.0 g 14.9 8.51 g U14022	248011-S 04B_11 04B_02 & U	140304B_20	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 11 02/11/2014 09 02/27/2014 19 03/05/2014 00):07):30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	9.5	0.48	0.10000	0.9458	0.9458	0.9458
Total TCDF	240.0	0.48	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.42	1.00000	0.0000	0.2122	0.4243
Total TCDD	10.0	0.42	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	9.5	0.36	0.03000	0.2842	0.2842	0.2842
2,3,4,7,8-PeCDF	22.0	0.43	0.30000	6.7302	6.7302	6.7302
Total PeCDF	260.0	0.40	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	2.5	0.25	1.00000	2.4768	2.4768	2.4768
Total PeCDD	26.0	0.25	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	15.0	0.64	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\end{array}$	1.5121	1.5121	1.5121
1,2,3,6,7,8-HxCDF	18.0	0.61		1.8005	1.8005	1.8005
2,3,4,6,7,8-HxCDF	21.0	0.53		2.0779	2.0779	2.0779
1,2,3,7,8,9-HxCDF	3.5	0.59		0.3544	0.3544	0.3544
Total HxCDF	210.0	0.59		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	2.7	1.0	0.10000	0.2728	0.2728	0.2728
1,2,3,6,7,8-HxCDD	7.6	0.44	0.10000	0.7609	0.7609	0.7609
1,2,3,7,8,9-HxCDD	ND	0.69	0.10000	0.4614	0.4614	0.4614
Total HxCDD	65.0	0.72	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	74.0	0.19	0.01000	0.7394	0.7394	0.7394
1,2,3,4,7,8,9-HpCDF	3.5	0.40	0.01000	0.0346	0.0346	0.0346
Total HpCDF	110.0	0.30	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	110.0	0.50	0.01000	1.0506	1.0506	1.0506
Total HpCDD	190.0	0.50	0.00000	0.0000	0.0000	0.0000
OCDF	61.0	0.86	0.00030	0.0182	0.0182	0.0182
OCDD	660.0	0.74	0.00030	0.1976	0.1976	0.1976
				20 ng/Kg	20 ng/Kg	20 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8	290 Samp	le Analysis	Results
----------	----------	-------------	---------

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	102 U14 BAL 10.2 25.1 7.64 U14 U14	2 g	U140226B_2	Matrix Dilution Collected Received 20 Extracted Analyzed	Soil NA 02/04/20' 02/11/20' 02/24/20' 02/27/20'	14 09:07 14 21:00	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	12.0 290.0		0.25 0.25	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C		2.00 2.00 2.00	82 Y 90 98 Y
2,3,7,8-TCDD Total TCDD	 16.0	0.74	0.23 IJY 0.23 Y	1,2,3,7,8-PeCDF-1 2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C	2.00 2.00	89 Y 95 Y
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	12.0 27.0 270.0	 	0.24 0.42 0.33	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	-13C -13C -13C	2.00 2.00 2.00 2.00	96 102 95 92
1,2,3,7,8-PeCDD Total PeCDD	36.0	3.80	0.20 IJ 0.20	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD)-13C)F-13C	2.00 2.00 2.00	80 72 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	20.0 30.0	21.00	0.34 0.27 P 0.32	1,2,3,4,7,8,9-HpCE 1,2,3,4,6,7,8-HpCE OCDD-13C		2.00 2.00 4.00	64 65 74
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	30.0 3.6 290.0		0.32 0.35 J 0.32	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.6 22.0 12.0 160.0		0.35 J 0.59 0.38 0.44	2,3,7,8-TCDD-37C	14	0.20	106
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	140.0 7.3 330.0		0.30 0.46 0.38	Total 2,3,7,8-TCDI Equivalence: 33 ng (Using 2005 WHO	ı/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	440.0 760.0		0.56 0.56				
OCDF OCDD	250.0 5400.0		0.36 Y 0.51				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_829671101100XerC019948085er7682-6627

Page 32 of 57

ND = Not Detected

NA = Not Applicable NC = Not Calculated

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	U14022 BAL 10.2 g 25.1 7.64 g U14022 U14022	248012-S 26B_18 24	140226B_20	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 10 02/11/2014 09 02/24/2014 21 02/27/2014 06):07 :00
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	12.0	0.25	0.10000	1.1923	1.1923	1.1923
Total TCDF	290.0	0.25	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.23	1.00000	0.7429	0.7429	0.7429
Total TCDD	16.0	0.23	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	12.0	0.24	0.03000	0.3468	0.3468	0.3468
2,3,4,7,8-PeCDF	27.0	0.42	0.30000	8.1524	8.1524	8.1524
Total PeCDF	270.0	0.33	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	ND	0.20	1.00000	3.8311	3.8311	3.8311
Total PeCDD	36.0	0.20	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	20.0	0.34	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\\ \end{array}$	2.0023	2.0023	2.0023
1,2,3,6,7,8-HxCDF	ND	0.27		2.1271	2.1271	2.1271
2,3,4,6,7,8-HxCDF	30.0	0.32		2.9534	2.9534	2.9534
1,2,3,7,8,9-HxCDF	3.6	0.35		0.3650	0.3650	0.3650
Total HxCDF	290.0	0.32		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	5.6	0.35	0.10000	0.5628	0.5628	0.5628
1,2,3,6,7,8-HxCDD	22.0	0.59	0.10000	2.2083	2.2083	2.2083
1,2,3,7,8,9-HxCDD	12.0	0.38	0.10000	1.1817	1.1817	1.1817
Total HxCDD	160.0	0.44	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	140.0	0.30	0.01000	1.3929	1.3929	1.3929
1,2,3,4,7,8,9-HpCDF	7.3	0.46	0.01000	0.0729	0.0729	0.0729
Total HpCDF	330.0	0.38	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	440.0	0.56	0.01000	4.4479	4.4479	4.4479
Total HpCDD	760.0	0.56	0.00000	0.0000	0.0000	0.0000
OCDF	250.0	0.36	0.00030	0.0756	0.0756	0.0756
OCDD	5400.0	0.51	0.00030	1.6071	1.6071	1.6071
				33 ng/Kg	33 ng/Kg	33 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_82

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

DU 00 0

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 U144 SMT 10.9 18.2 8.92 U144 U144	g g)224	. U140304B_	Dilution N Collected 0 Received 0 _20 Extracted 0	Soil JA 2/04/2014 10:59 2/11/2014 09:07 2/27/2014 19:30 3/05/2014 00:53	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	8.60 230.00		0.39 0.39	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-130	2.00 2.00 C 2.00	98 102 109
2,3,7,8-TCDD Total TCDD	0.41 13.00		0.32 J 0.32	2,3,4,7,8-PeCDF-130 1,2,3,7,8-PeCDD-130 1,2,3,4,7,8-HxCDF-1	C 2.00 C 2.00	85 Y 114 93
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	9.40 21.00 260.00	 	0.24 0.21 0.23	1,2,3,6,7,8-HxCDF-1 2,3,4,6,7,8-HxCDF-1 1,2,3,7,8,9-HxCDF-1	3C 2.00 3C 2.00 3C 2.00	94 101 94
1,2,3,7,8-PeCDD Total PeCDD	2.50 24.00		0.36 J 0.36	1,2,3,4,7,8-HxCDD-1 1,2,3,6,7,8-HxCDD-1 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	3C 2.00 -13C 2.00	83 79 78 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	15.00 16.00 19.00		0.40 0.55 0.41	1,2,3,4,6,7,8-HpCDD OCDD-13C	0-13C 2.00 4.00	90 72
1,2,3,7,8,9-HxCDF Total HxCDF	3.20 190.00		0.51 J 0.47	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-1	2.00 3C 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.70 6.70 5.50 69.00		0.38 J 0.41 0.43 J 0.40	2,3,7,8-TCDD-37Cl4	0.20	100
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	70.00 3.30 110.00	 	0.31 0.34 J 0.33	Total 2,3,7,8-TCDD Equivalence: 19 ng/k (Using 2005 WHO F	(g actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	98.00 180.00		0.37 0.37			
OCDF OCDD	59.00 640.00		0.82 0.76			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

RL = Reporting Limit.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

2,3,7,8-TCDD	Toxic Equiv	valency (TEC	Q) Calculations
	ESN	Pacific	

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	U14030 SMT 10.9 g 18.2 8.92 g U14022	48013-S 04B_12 04B_02 & U	140304B_20	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 10 02/11/2014 09 02/27/2014 19 03/05/2014 00	:07 :30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	8.60	0.39	0.10000	0.8649	0.8649	0.8649
Total TCDF	230.00	0.39	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	0.41	0.32	1.00000	0.4072	0.4072	0.4072
Total TCDD	13.00	0.32	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	9.40	0.24	0.03000	0.2813	0.2813	0.2813
2,3,4,7,8-PeCDF	21.00	0.21	0.30000	6.2647	6.2647	6.2647
Total PeCDF	260.00	0.23	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	2.50	0.36	1.00000	2.5449	2.5449	2.5449
Total PeCDD	24.00	0.36	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	15.00	0.40	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\end{array}$	1.5027	1.5027	1.5027
1,2,3,6,7,8-HxCDF	16.00	0.55		1.6224	1.6224	1.6224
2,3,4,6,7,8-HxCDF	19.00	0.41		1.9275	1.9275	1.9275
1,2,3,7,8,9-HxCDF	3.20	0.51		0.3179	0.3179	0.3179
Total HxCDF	190.00	0.47		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	2.70	0.38	0.10000	0.2750	0.2750	0.2750
1,2,3,6,7,8-HxCDD	6.70	0.41	0.10000	0.6667	0.6667	0.6667
1,2,3,7,8,9-HxCDD	5.50	0.43	0.10000	0.5466	0.5466	0.5466
Total HxCDD	69.00	0.40	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	70.00	0.31	0.01000	0.6981	0.6981	0.6981
1,2,3,4,7,8,9-HpCDF	3.30	0.34	0.01000	0.0326	0.0326	0.0326
Total HpCDF	110.00	0.33	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	98.00	0.37	0.01000	0.9794	0.9794	0.9794
Total HpCDD	180.00	0.37	0.00000	0.0000	0.0000	0.0000
OCDF	59.00	0.82	0.00030	0.0176	0.0176	0.0176
OCDD	640.00	0.76	0.00030	0.1926	0.1926	0.1926
				19 ng/Kg	19 ng/Kg	19 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 U14(SMT 10.5 18.7 8.54 U14(U14(g g)224	u140304B_	Dilution Collected Received _20 Extracted	Soil NA 02/04/2014 11:45 02/11/2014 09:07 02/27/2014 19:30 03/05/2014 01:38	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	9.1 230.0		0.38 0.38	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13	2.00 2.00 3C 2.00	94 99 108
2,3,7,8-TCDD Total TCDD	 11.0	0.43	0.33 IJ 0.33	2,3,4,7,8-PeCDF-13 1,2,3,7,8-PeCDD-13 1,2,3,4,7,8-HxCDF-	BC 2.00 BC 2.00	82 Y 110 95
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	9.7 22.0 270.0	 	0.31 0.29 0.30	1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF-	13C2.0013C2.0013C2.00	96 104 95
1,2,3,7,8-PeCDD Total PeCDD	22.0	2.20	0.24 IJ 0.24	1,2,3,4,7,8-HxCDD- 1,2,3,6,7,8-HxCDD- 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD	13C 2.00 F-13C 2.00	85 79 79 81
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	15.0 17.0 21.0		0.53 0.45 0.33	1,2,3,4,6,7,8-HpCD OCDD-13C		92 74
1,2,3,7,8,9-HxCDF Total HxCDF	3.5 210.0		0.46 J 0.44	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-	2.00 13C 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	3.0 7.0 5.4 70.0		0.85 J 0.28 0.79 J 0.64	2,3,7,8-TCDD-37Cl4	4 0.20	98
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	73.0 3.4 120.0		0.30 0.49 J 0.40	Total 2,3,7,8-TCDD Equivalence: 20 ng/ (Using 2005 WHO F	Kg	
1,2,3,4,6,7,8-HpCDD Total HpCDD	100.0 190.0		0.27 0.27			
OCDF OCDD	59.0 670.0		0.75 0.69			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

RL = Reporting Limit.

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

2,3,7,8-TCDD	Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	U14030 SMT 10.5 g 18.7 8.54 g U14022	248014-S 04B_13 04B_02 & U	140304B_20	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 11 02/11/2014 09 02/27/2014 19 03/05/2014 01):07):30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	9.1	0.38	0.10000	0.9149	0.9149	0.9149
Total TCDF	230.0	0.38	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.33	1.00000	0.4277	0.4277	0.4277
Total TCDD	11.0	0.33	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	9.7	0.31	0.03000	0.2911	0.2911	0.2911
2,3,4,7,8-PeCDF	22.0	0.29	0.30000	6.5593	6.5593	6.5593
Total PeCDF	270.0	0.30	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	ND	0.24	1.00000	2.2206	2.2206	2.2206
Total PeCDD	22.0	0.24	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	15.0	0.53	0.10000	1.4629	1.4629	1.4629
1,2,3,6,7,8-HxCDF	17.0	0.45	0.10000	1.7089	1.7089	1.7089
2,3,4,6,7,8-HxCDF	21.0	0.33	0.10000	2.0703	2.0703	2.0703
1,2,3,7,8,9-HxCDF	3.5	0.46	0.10000	0.3540	0.3540	0.3540
Total HxCDF	210.0	0.44	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	3.0	0.85	0.10000	0.2999	0.2999	0.2999
1,2,3,6,7,8-HxCDD	7.0	0.28	0.10000	0.7035	0.7035	0.7035
1,2,3,7,8,9-HxCDD	5.4	0.79	0.10000	0.5370	0.5370	0.5370
Total HxCDD	70.0	0.64	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	73.0	0.30	0.01000	0.7261	0.7261	0.7261
1,2,3,4,7,8,9-HpCDF	3.4	0.49	0.01000	0.0337	0.0337	0.0337
Total HpCDF	120.0	0.40	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	100.0	0.27	0.01000	1.0233	1.0233	1.0233
Total HpCDD	190.0	0.27	0.00000	0.0000	0.0000	0.0000
OCDF	59.0	0.75	0.00030	0.0177	0.0177	0.0177
OCDD	670.0	0.69	0.00030	0.1996	0.1996	0.1996
				20 ng/Kg	20 ng/Kg	20 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

> Tel: 612-607-1700 Fax: 612- 607-6444

Method	8290	Sample	Analy	/sis	Results
--------	------	--------	-------	------	---------

Client - ESN Pacific

DUI 07

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 U144 SMT 10.0 21.7 7.83 U144 U144	g g)224	U140304B_	Matrix Dilution Collected Received 20 Extracted Analyzed	Soil NA 02/04/201 02/11/201 02/27/201 03/05/201	4 09:07 4 19:30	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	11.00 270.00		0.46 0.46	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13	30	2.00 2.00 2.00	95 100 110
2,3,7,8-TCDD Total TCDD	0.67 14.00		0.39 J 0.39	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1 1,2,3,4,7,8-HxCDF-	3C 3C	2.00 2.00 2.00 2.00	86 Y 116 93
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	11.00 24.00 280.00	 	0.24 0.39 0.32	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00	93 93 104 94 86
1,2,3,7,8-PeCDD Total PeCDD	22.00	2.4	0.21 IJ 0.21	1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD	-13C)F-13C	2.00 2.00 2.00 2.00	76 80 81
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	17.00 20.00 21.00		0.57 0.61 0.34	1,2,3,4,6,7,8-HpCD OCDD-13C		2.00 2.00 4.00	91 74
1,2,3,7,8,9-HxCDF Total HxCDF	4.00 220.00		0.33 J 0.46	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.80 5.80 70.00	7.5	0.36 J 0.42 I 0.31 J 0.37	2,3,7,8-TCDD-37Cl	4	0.20	100
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	80.00 4.10 120.00		0.22 0.50 J 0.36	Total 2,3,7,8-TCDD Equivalence: 22 ng (Using 2005 WHO	/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	110.00 200.00		0.56 0.56				
OCDF OCDD	67.00 720.00		0.70 0.77				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit.

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_829671101100XerC019948085er7682-6627

Page 38 of 57

> Tel: 612-607-1700 Fax: 612- 607-6444

2,3,7,8-TCDD	Toxic Equivalency (TEQ)	Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	U14030 SMT 10.0 g 21.7 7.83 g U14022	248015-S 04B_14 04B_02 & U	140304B_20	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 10 02/11/2014 09 02/27/2014 19 03/05/2014 02):07):30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	11.00	0.46	0.10000	1.0538	1.0538	1.0538
Total TCDF	270.00	0.46	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	0.67	0.39	1.00000	0.6667	0.6667	0.6667
Total TCDD	14.00	0.39	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	11.00	0.24	0.03000	0.3194	0.3194	0.3194
2,3,4,7,8-PeCDF	24.00	0.39	0.30000	7.1498	7.1498	7.1498
Total PeCDF	280.00	0.32	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	ND	0.21	1.00000	2.4427	2.4427	2.4427
Total PeCDD	22.00	0.21	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	17.00	0.57	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\end{array}$	1.7217	1.7217	1.7217
1,2,3,6,7,8-HxCDF	20.00	0.61		1.9854	1.9854	1.9854
2,3,4,6,7,8-HxCDF	21.00	0.34		2.1190	2.1190	2.1190
1,2,3,7,8,9-HxCDF	4.00	0.33		0.4026	0.4026	0.4026
Total HxCDF	220.00	0.46		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	2.80	0.36	0.10000	0.2841	0.2841	0.2841
1,2,3,6,7,8-HxCDD	ND	0.42	0.10000	0.7527	0.7527	0.7527
1,2,3,7,8,9-HxCDD	5.80	0.31	0.10000	0.5810	0.5810	0.5810
Total HxCDD	70.00	0.37	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	80.00	0.22	0.01000	0.7958	0.7958	0.7958
1,2,3,4,7,8,9-HpCDF	4.10	0.50	0.01000	0.0406	0.0406	0.0406
Total HpCDF	120.00	0.36	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	110.00	0.56	0.01000	1.1320	1.1320	1.1320
Total HpCDD	200.00	0.56	0.00000	0.0000	0.0000	0.0000
OCDF	67.00	0.70	0.00030	0.0200	0.0200	0.0200
OCDD	720.00	0.77	0.00030	0.2153	0.2153	0.2153
				22 ng/Kg	22 ng/Kg	22 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8	290 Samp	le Analysis	Results
----------	----------	-------------	---------

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 U144 SMT 6.40 18.9 5.19 U144 U144	g g)224	u140304B_	Matrix Dilution Collected Received 20 Extracted Analyzed	02/11/20 02/27/20	14 10:07 14 09:07 14 19:30 14 03:08	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	3.8 79.0		0.65 0.65	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	;	2.00 2.00	92 96
2,3,7,8-TCDD Total TCDD	ND 3.3		0.52 0.52	1,2,3,7,8-PeCDF-1 2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	13C 13C	2.00 2.00 2.00	108 84 Y 113
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	3.3 8.0 93.0	 	0.45 J 0.40 J 0.43	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	-13C -13C -13C	2.00 2.00 2.00 2.00	92 101 103 95
1,2,3,7,8-PeCDD Total PeCDD	2.9	1.2	0.27 IJ 0.27 J	1,2,3,4,7,8-HxCDE 1,2,3,6,7,8-HxCDE 1,2,3,4,6,7,8-HpCI	D-13C DF-13C	2.00 2.00 2.00	86 78 86
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	6.2 8.7		0.57 J 0.75 J	1,2,3,4,7,8,9-HpCI 1,2,3,4,6,7,8-HpCI OCDD-13C		2.00 2.00 4.00	88 97 91
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	10.0 1.4 150.0		0.74 0.69 J 0.69	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCDD		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	3.2 12.0 6.7 74.0		0.57 J 0.76 0.69 J 0.67	2,3,7,8-TCDD-37C	214	0.20	93
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	84.0 3.4 220.0	 	0.46 1.00 J 0.73	Total 2,3,7,8-TCD Equivalence: 14 no (Using 2005 WHO	g/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	300.0 520.0		0.59 0.59				
OCDF OCDD	200.0 3600.0		0.91 0.81				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

RL = Reporting Limit.

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	U14030 SMT 6.40 g 18.9 5.19 g U14022	248016-S 04B_15 04B_02 & U	140304B_20	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 10 02/11/2014 09 02/27/2014 19 03/05/2014 03	:07 :30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	3.8	0.65	0.10000	0.3763	0.3763	0.3763
Total TCDF	79.0	0.65	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.52	1.00000	0.0000	0.2592	0.5184
Total TCDD	3.3	0.52	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	3.3	0.45	0.03000	0.0992	0.0992	0.0992
2,3,4,7,8-PeCDF	8.0	0.40	0.30000	2.4084	2.4084	2.4084
Total PeCDF	93.0	0.43	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	ND	0.27	1.00000	1.2273	1.2273	1.2273
Total PeCDD	2.9	0.27	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	6.2	0.57	0.10000	0.6152	0.6152	0.6152
1,2,3,6,7,8-HxCDF	8.7	0.75	0.10000	0.8650	0.8650	0.8650
2,3,4,6,7,8-HxCDF	10.0	0.74	0.10000	1.0415	1.0415	1.0415
1,2,3,7,8,9-HxCDF	1.4	0.69	0.10000	0.1411	0.1411	0.1411
Total HxCDF	150.0	0.69	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	3.2	0.57	0.10000	0.3218	0.3218	0.3218
1,2,3,6,7,8-HxCDD	12.0	0.76	0.10000	1.2422	1.2422	1.2422
1,2,3,7,8,9-HxCDD	6.7	0.69	0.10000	0.6679	0.6679	0.6679
Total HxCDD	74.0	0.67	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	84.0	0.46	0.01000	0.8394	0.8394	0.8394
1,2,3,4,7,8,9-HpCDF	3.4	1.00	0.01000	0.0343	0.0343	0.0343
Total HpCDF	220.0	0.73	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	300.0	0.59	0.01000	3.0432	3.0432	3.0432
Total HpCDD	520.0	0.59	0.00000	0.0000	0.0000	0.0000
OCDF	200.0	0.91	0.00030	0.0611	0.0611	0.0611
OCDD	3600.0	0.81	0.00030	1.0855	1.0855	1.0855
				14 ng/Kg	14 ng/Kg	15 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_82

> Tel: 612-607-1700 Fax: 612- 607-6444

Client - ESN Pacific

.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1025 U140 SMT 10.7 16.1 8.98 U140 U140	g g)224	u140304B_	Dilution Collected Received _20 Extracted	Soil NA 02/04/2014 02/11/2014 02/27/2014 03/05/2014	09:07 19:30	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	4.50 100.00		0.32 0.32	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13	30	2.00 2.00 2.00	104 109 127
2,3,7,8-TCDD Total TCDD	0.48 6.70		0.25 J 0.25	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1 1,2,3,4,7,8-HxCDF-	3C 3C	2.00 2.00 2.00 2.00	96 Y 134 100
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	5.80 13.00 140.00	 	0.21 0.16 0.18	1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF-	·13C ·13C ·13C	2.00 2.00 2.00	100 107 113 104 91
1,2,3,7,8-PeCDD Total PeCDD	2.50 22.00		0.12 J 0.12	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD	-13C F-13C	2.00 2.00 2.00 2.00	91 87 95 99
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	12.00 14.00 18.00		0.53 0.23 0.21	1,2,3,4,6,7,8-HpCD OCDD-13C		2.00 4.00	108 108
1,2,3,7,8,9-HxCDF Total HxCDF	2.70 200.00		0.26 J 0.31	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	4.40 17.00 8.50 110.00		0.28 J 0.30 0.21 0.26	2,3,7,8-TCDD-37CI	4	0.20	108
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	120.00 5.20 290.00	 	0.16 0.31 J 0.23	Total 2,3,7,8-TCDD Equivalence: 21 ng, (Using 2005 WHO	/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	360.00 610.00		0.40 0.40				
OCDF OCDD	240.00 4200.00		0.31 0.34				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

RL = Reporting Limit.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	U14030 SMT 10.7 g 16.1 8.98 g U14022	248017-S 04B_16 04B_02 & U	140304B_20	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 02/04/2014 09 02/11/2014 09 02/27/2014 19 03/05/2014 03):07):30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	4.50	0.32	0.10000	0.4526	0.4526	0.4526
Total TCDF	100.00	0.32	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	0.48	0.25	1.00000	0.4751	0.4751	0.4751
Total TCDD	6.70	0.25	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	5.80	0.21	0.03000	0.1752	0.1752	0.1752
2,3,4,7,8-PeCDF	13.00	0.16	0.30000	4.0438	4.0438	4.0438
Total PeCDF	140.00	0.18	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	2.50	0.12	1.00000	2.4535	2.4535	2.4535
Total PeCDD	22.00	0.12	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	12.00	0.53	0.10000	1.1988	1.1988	1.1988
1,2,3,6,7,8-HxCDF	14.00	0.23	0.10000	1.4133	1.4133	1.4133
2,3,4,6,7,8-HxCDF	18.00	0.21	0.10000	1.7704	1.7704	1.7704
1,2,3,7,8,9-HxCDF	2.70	0.26	0.10000	0.2678	0.2678	0.2678
Total HxCDF	200.00	0.31	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	4.40	0.28	0.10000	0.4447	0.4447	0.4447
1,2,3,6,7,8-HxCDD	17.00	0.30	0.10000	1.6783	1.6783	1.6783
1,2,3,7,8,9-HxCDD	8.50	0.21	0.10000	0.8481	0.8481	0.8481
Total HxCDD	110.00	0.26	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	120.00	0.16	0.01000	1.1781	1.1781	1.1781
1,2,3,4,7,8,9-HpCDF	5.20	0.31	0.01000	0.0522	0.0522	0.0522
Total HpCDF	290.00	0.23	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	360.00	0.40	0.01000	3.6495	3.6495	3.6495
Total HpCDD	610.00	0.40	0.00000	0.0000	0.0000	0.0000
OCDF	240.00	0.31	0.00030	0.0724	0.0724	0.0724
OCDD	4200.00	0.34	0.00030	1.2711	1.2711	1.2711
				21 ng/Kg	21 ng/Kg	21 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_82

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

Lab Sample ID	BLANK-39446	Matrix	Solid
Filename	F140226B_09	Dilution	NA
Total Amount Extracted	10.5 g	Extracted	02/24/2014 21:00
ICAL ID	F131125	Analyzed	02/27/2014 02:08
CCal Filename(s)	F140226B_01 & F140226B_17	Injected By	BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.430	0.140	0.035 IJ 0.035 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 81 81
2,3,7,8-TCDD Total TCDD	 ND	0.060	0.057 IJ 0.057	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	82 88 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND	0.150 	0.062 IJ 0.037 0.049	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	91 88 82 73
1,2,3,7,8-PeCDD Total PeCDD	ND	0.086	0.039 IJ 0.039	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	77 74 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND 0.094 	 0.028	0.048 0.035 J 0.028 IJ	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	79 70
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.094		0.042 0.038 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND	0.081	0.050 0.052 IJ 0.048 0.050	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND	0.096 	0.056 IJ 0.047 0.051	Total 2,3,7,8-TCDD Equivalence: 0.19 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.100	0.068	0.054 IJ 0.054 J			
OCDF OCDD	0.200	0.370	0.120 J 0.150 IJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

> Tel: 612-607-1700 Fax: 612- 607-6444

8-TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	F14022 BAL 10.5 g 0.0 10.5 g F13112		140226B_17	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 02/24/2014 1 02/24/2014 1 02/24/2014 2 02/27/2014 0	4:08 1:00
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	ND	0.035	0.10000	0.0136	0.0136	0.0136
Total TCDF	0.430	0.035	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.057	1.00000	0.0601	0.0601	0.0601
Total TCDD	ND	0.057	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	ND	0.062	0.03000	0.0044	0.0044	0.0044
2,3,4,7,8-PeCDF	ND	0.037	0.30000	0.0000	0.0056	0.0112
Total PeCDF	ND	0.049	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	ND	0.039	1.00000	0.0857	0.0857	0.0857
Total PeCDD	ND	0.039	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	ND	0.048	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\end{array}$	0.0000	0.0024	0.0048
1,2,3,6,7,8-HxCDF	0.094	0.035		0.0094	0.0094	0.0094
2,3,4,6,7,8-HxCDF	ND	0.028		0.0028	0.0028	0.0028
1,2,3,7,8,9-HxCDF	ND	0.042		0.0000	0.0021	0.0042
Total HxCDF	0.094	0.038		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	ND	0.050	0.10000	0.0000	0.0025	0.0050
1,2,3,6,7,8-HxCDD	ND	0.052	0.10000	0.0081	0.0081	0.0081
1,2,3,7,8,9-HxCDD	ND	0.048	0.10000	0.0000	0.0024	0.0048
Total HxCDD	ND	0.050	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	ND	0.056	0.01000	0.0010	0.0010	0.0010
1,2,3,4,7,8,9-HpCDF	ND	0.047	0.01000	0.0000	0.0002	0.0005
Total HpCDF	ND	0.051	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	ND	0.054	0.01000	0.0007	0.0007	0.0007
Total HpCDD	0.100	0.054	0.00000	0.0000	0.0000	0.0000
OCDF	0.200	0.12	0.00030	0.0001	0.0001	0.0001
OCDD	ND	0.15	0.00030	0.0001	0.0001	0.0001
				0.19 ng/Kg	0.20 ng/Kg	0.22 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_82

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

Lab Sample ID	BLANK-39465	Matrix	Solid
Filename	P140301A_05	Dilution	NA
Total Amount Extracted	10.4 g	Extracted	02/26/2014 21:30
ICAL ID	P130624	Analyzed	03/01/2014 10:03
CCal Filename(s)	P140228B_19 & P140301A_15	Injected By	BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 ND	0.14	0.140 IJ 0.140	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 82 75
2,3,7,8-TCDD Total TCDD	ND ND		0.150 0.150	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	70 73 83
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	0.160 0.110 0.130	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	87 83 83 79
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.160 0.160	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	79 72 77 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND	 	0.110 0.084 0.091	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	76 81 Y
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.110 0.099	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	E	0.130 0.130 0.130 0.130 0.130	2,3,7,8-TCDD-37Cl4	0.20	90
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND	0.20	0.120 IJ 0.170 0.140	Total 2,3,7,8-TCDD Equivalence: 0.018 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.17 0.44		0.140 J 0.140 J			
OCDF OCDD	ND 0.95		0.260 0.330 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_829671101100XerC019748085er7682-6627

Page 46 of 57

> Tel: 612-607-1700 Fax: 612- 607-6444

8-TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P1403 BAL 10.4 g 0.0 10.4 g P1306		140301A_15	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 02/25/2014 2 02/25/2014 2 02/26/2014 2 03/01/2014 1	0:04 1:30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	ND	0.14	0.10000	0.0143	0.0143	0.0143
Total TCDF	ND	0.14	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.15	1.00000	0.0000	0.0752	0.1504
Total TCDD	ND	0.15	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	ND	0.16	0.03000	0.0000	0.0023	0.0047
2,3,4,7,8-PeCDF	ND	0.11	0.30000	0.0000	0.0169	0.0339
Total PeCDF	ND	0.13	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	ND	0.16	1.00000	0.0000	0.0775	0.1550
Total PeCDD	ND	0.16	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND	0.11 0.084 0.091 0.11 0.099	0.10000 0.10000 0.10000 0.10000 0.00000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0053 0.0042 0.0045 0.0057 0.0000	0.0107 0.0084 0.0091 0.0114 0.0000
1,2,3,4,7,8-HxCDD	ND	0.13	0.10000	0.0000	0.0067	0.0134
1,2,3,6,7,8-HxCDD	ND	0.13	0.10000	0.0000	0.0064	0.0129
1,2,3,7,8,9-HxCDD	ND	0.13	0.10000	0.0000	0.0065	0.0130
Total HxCDD	ND	0.13	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	ND	0.12	0.01000	0.0020	0.0020	0.0020
1,2,3,4,7,8,9-HpCDF	ND	0.17	0.01000	0.0000	0.0008	0.0017
Total HpCDF	ND	0.14	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	0.17	0.14	0.01000	0.0017	0.0017	0.0017
Total HpCDD	0.44	0.14	0.00000	0.0000	0.0000	0.0000
OCDF	ND	0.26	0.00030	0.0000	0.0000	0.0001
OCDD	0.95	0.33	0.00030	0.0003	0.0003	0.0003
				0.018 ng/Kg	0.23 ng/Kg	0.44 ng/Kg

0.018 ng/Kg Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, Report No.....10257348_82

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

Lab Sample ID	BLANK-39477	Matrix	Solid
Filename	P140304B_01	Dilution	NA
Total Amount Extracted	10.1 g	Extracted	02/27/2014 19:30
ICAL ID	P130624	Analyzed	03/04/2014 17:06
CCal Filename(s)	P140304A_11 & P140304B_15	Injected By	SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 ND	0.110	0.076 IJ 0.076	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 86 79
2,3,7,8-TCDD Total TCDD	ND ND		0.110 0.110	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	78 87 89
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.10 0.10	0.089 	0.086 IJ 0.069 J 0.077 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	88 86 87 87
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.140 0.140	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	87 75 85 83
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.10	0.120	0.048 IJ 0.041 J 0.043 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	89 68
1,2,3,7,8,9-HxCDF Total HxCDF	0.14 0.41		0.078 J 0.053 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.14 0.14	0.140 0.120	0.130 J 0.120 IJ 0.094 IJ 0.110 J	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	 ND	0.150 0.220	0.085 IJ 0.078 IJ 0.082	Total 2,3,7,8-TCDD Equivalence: 0.15 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.23 0.41		0.110 J 0.110 J			
OCDF OCDD	0.70 1.30		0.160 J 0.220 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

> Tel: 612-607-1700 Fax: 612- 607-6444

8-TCDD Toxic Equivalency (TEQ) Calculations

ESN Pacific

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	P1403 SMT 10.1 g 0.0 10.1 g P1306		140304B_15	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 02/26/2014 1 02/26/2014 1 02/27/2014 1 03/04/2014 1	9:20 9:30
Parameter	Conc ng/Kg	RL ng/Kg	WHO2005	LB	MB	UB
2,3,7,8-TCDF	ND	0.076	0.10000	0.0115	0.0115	0.0115
Total TCDF	ND	0.076	0.00000	0.0000	0.0000	0.0000
2,3,7,8-TCDD	ND	0.11	1.00000	0.0000	0.0525	0.1050
Total TCDD	ND	0.11	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDF	ND	0.086	0.03000	0.0027	0.0027	0.0027
2,3,4,7,8-PeCDF	0.10	0.069	0.30000	0.0308	0.0308	0.0308
Total PeCDF	0.10	0.077	0.00000	0.0000	0.0000	0.0000
1,2,3,7,8-PeCDD	ND	0.14	1.00000	0.0000	0.0711	0.1422
Total PeCDD	ND	0.14	0.00000	0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDF	ND	0.048	$\begin{array}{c} 0.10000\\ 0.10000\\ 0.10000\\ 0.10000\\ 0.00000\\ \end{array}$	0.0118	0.0118	0.0118
1,2,3,6,7,8-HxCDF	0.10	0.041		0.0104	0.0104	0.0104
2,3,4,6,7,8-HxCDF	0.17	0.043		0.0171	0.0171	0.0171
1,2,3,7,8,9-HxCDF	0.14	0.078		0.0138	0.0138	0.0138
Total HxCDF	0.41	0.053		0.0000	0.0000	0.0000
1,2,3,4,7,8-HxCDD	0.14	0.13	0.10000	0.0142	0.0142	0.0142
1,2,3,6,7,8-HxCDD	ND	0.12	0.10000	0.0143	0.0143	0.0143
1,2,3,7,8,9-HxCDD	ND	0.094	0.10000	0.0121	0.0121	0.0121
Total HxCDD	0.14	0.11	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDF	ND	0.085	0.01000	0.0015	0.0015	0.0015
1,2,3,4,7,8,9-HpCDF	ND	0.078	0.01000	0.0022	0.0022	0.0022
Total HpCDF	ND	0.082	0.00000	0.0000	0.0000	0.0000
1,2,3,4,6,7,8-HpCDD	0.23	0.11	0.01000	0.0023	0.0023	0.0023
Total HpCDD	0.41	0.11	0.00000	0.0000	0.0000	0.0000
OCDF	0.70	0.16	0.00030	0.0002	0.0002	0.0002
OCDD	1.30	0.22	0.00030	0.0004	0.0004	0.0004
				0.15 ng/Kg	0.27 ng/Kg	0.39 ng/Kg

Final values are valid to only 2 significant figures

TEQs for Totals classes include contributions from non 2,3,7,8 isomers only

LB = Lower Bound, Where "ND", TEQ Conc = 0

MB = Medium Bound, Where "ND", TEQ Conc = (LOD/2) * (TEF Factor)

UB = Upper Bound, Where "ND", TEQ Conc = LOD * (TEF Factor)

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	F14 10.0 F13 F14	1125	6 F140226B_	Matrix Dilution Extracted 17 Analyzed Injected By	Solid NA 02/24/2014 2 02/27/2014 00 BAL	
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.23	115	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,2,7,8,0000000000000000000000000000000	2.0 2.0 2.0	75 85 85
2,3,7,8-TCDD Total TCDD	0.20	0.18	89	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.0 2.0	85 97
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.2 1.1	117 109	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.0 2.0 2.0 2.0 2.0 2.0	81 89 87 82 77
1,2,3,7,8-PeCDD Total PeCDD	1.0	1.0	100	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13 1,2,3,4,6,7,8-HpCDF-13	2.0 C 2.0	78 78 78 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.1 1.1 1.0	110 109 100	1,2,3,4,7,8,9-HpCDF-13 1,2,3,4,6,7,8-HpCDD-13 OCDD-13C	C 2.0 4.0	83 69
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.1	107	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.2 1.3 1.2	115 128 119	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 0.94	106 94			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	1.0	102			
OCDF OCDD	2.0 2.0	2.0 2.2	99 110			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable

= See Discussion

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	P14 10.6 P13 P14	0624	& P140301A_	Matrix Dilution Extracted _15 Analyzed Injected By	Solid NA 02/26/2014 2 03/01/2014 0 BAL	
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.22	112	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.0 2.0 2.0	79 85 75
2,3,7,8-TCDD Total TCDD	0.20	0.18	89	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.0 2.0	71 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.2 1.1	117 111	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.0 2.0 2.0 2.0 2.0 2.0	88 90 86 88 80
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.97	97	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13 1,2,3,4,6,7,8-HpCDF-13	2.0 C 2.0	80 75 82 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.1 1.1 1.1	111 112 112	1,2,3,4,7,8,9-HpCDF-13 1,2,3,4,6,7,8-HpCDD-13 OCDD-13C	C 2.0 C 2.0 4.0	80 100 Y
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.1	106	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.2 1.2 1.2	115 122 118	2,3,7,8-TCDD-37Cl4	0.20	85
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.0	114 103			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	1.1	106			
OCDF OCDD	2.0 2.0	2.2 2.2	108 110			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations

Nn = Value obtained from additional analysis

NA = Not Applicable

= See Discussion

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	P14 10.3 P13 P14	80624	a P140304B_	Matrix Dilution Extracted _15 Analyzed Injected By	Solid NA 02/27/2014 19 03/05/2014 02 SMT	
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.23	115	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.0 2.0	81 96
2,3,7,8-TCDD Total TCDD	0.20	0.19	93	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.0 2.0 2.0	89 87 100
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.2 1.1	116 108	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0 2.0	94 94 91 94 96
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.96	96	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13	2.0 C 2.0	81 90
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.1 1.1 1.1	110 107 107	1,2,3,4,7,8,9-HpCDF-13 1,2,3,4,6,7,8-HpCDD-13 OCDD-13C		87 91 70
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.1	105	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.1 1.2 1.1	109 120 113	2,3,7,8-TCDD-37Cl4	0.20	92
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 0.98	109 98			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	1.0	102			
OCDF OCDD	2.0 2.0	2.3 2.2	115 112			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations

Nn = Value obtained from additional analysis

NA = Not Applicable

= See Discussion

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	F14 10.5 F13 F14	1125	F140226B_	Matrix Dilution Extracted _17 Analyzed Injected By	Solid NA 02/24/2014 2 02/27/2014 0 BAL	
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.24	119	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.0 2.0 2.0	64 74 78
2,3,7,8-TCDD Total TCDD	0.20	0.18	91	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.0 2.0	81 90
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.2 1.1	119 109	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.0 2.0 2.0 2.0 2.0 2.0	78 90 87 78 73
1,2,3,7,8-PeCDD Total PeCDD	1.0	1.0	103	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13 1,2,3,4,6,7,8-HpCDF-13	2.0 C 2.0	73 81 78 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.2 1.1 1.0	115 107 102	1,2,3,4,7,8,9-HpCDF-13 1,2,3,4,6,7,8-HpCDD-13 OCDD-13C	C 2.0 C 2.0 4.0	84 73
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.1	107	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.2 1.2 1.2	124 123 121	2,3,7,8-TCDD-37Cl4	0.20	75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 0.94	108 94			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	1.0	102			
OCDF OCDD	2.0 2.0	2.0 2.2	101 110			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations

Nn = Value obtained from additional analysis

NA = Not Applicable

= See Discussion

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290

Spike Recovery Relative Percent Difference (RPD) Results

Client	ESN Pacific				
Spike 1 ID Spike 1 Filename	LCS-39447 F140226B_15		Spike 2 ID Spike 2 Filename	LCSD-39448 F140226B_16	
Compound		Spike 1 %REC	Spike 2 %REC	%RPD	
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCE 2,3,4,7,8-PeCE 1,2,3,7,8-PeCE 1,2,3,4,7,8-Hx(2,3,4,6,7,8-Hx(1,2,3,7,8,9-Hx(1,2,3,4,7,8-Hx(1,2,3,4,6,7,8-Hx(1,2,3,4,6,7,8-Hx(1,2,3,4,6,7,8-Hx(1,2,3,4,6,7,8-Hx(1,2,3,4,6,7,8-Hx(1,2,3,4,6,7,8-Hx(1,2,3,4,6,7,8-Hx(1,2,3,4,6,7,8-Hx(0,2,3,4,6,7,8-Hx(0,2,3,4,7,8,4,7,8)))	DF DD DDF DDF DDF DDF DDD DDD DDD pCDF pCDF	115 89 117 109 100 110 109 100 107 115 128 119 106 94 102 99 110	119 91 119 109 103 115 107 102 107 124 123 121 108 94 102 101 110	$\begin{array}{c} 3.4\\ 2.2\\ 1.7\\ 0.0\\ 3.0\\ 4.4\\ 1.9\\ 2.0\\ 0.0\\ 7.5\\ 4.0\\ 1.7\\ 1.9\\ 0.0\\ 0.0\\ 2.0\\ 0.0\\ 2.0\\ 0.0\end{array}$	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spiked Sample Report

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	1029 U14 10.5 U14 U14	0224		Matrix Dilution Extracted Analyzed Injected By	Soil NA 02/27/201 03/04/201 SMT		
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.34	169	2,3,7,8-TCDF 2,3,7,8-TCDD	-13C	2.00 2.00	95 101
2,3,7,8-TCDD	0.20	0.19	95	1,2,3,7,8-PeC 2,3,4,7,8-PeC 1,2,3,7,8-PeC	DF-13C DD-13C	2.00 2.00 2.00	104 82 Y 112
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.29 1.38	129 138	1,2,3,4,7,8-H 1,2,3,6,7,8-H 2,3,4,6,7,8-H 1,2,3,7,8,9-H	(CDF-13C (CDF-13C (CDF-13C	2.00 2.00 2.00 2.00	89 95 101 92
1,2,3,7,8-PeCDD	1.00	1.08	108	1,2,3,4,7,8-H 1,2,3,6,7,8-H 1,2,3,4,6,7,8- 1,2,3,4,7,8,9-I	CDD-13C HpCDF-13C	2.00 2.00 2.00 2.00	81 76
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.32 1.32 1.28	132 132 128	1,2,3,4,6,7,8-I 0CDD-13C	HpCDD-13C	2.00 2.00 4.00	84 70
1,2,3,7,8,9-HxCDF	1.00	1.20	120	1,2,3,4-TCDD 1,2,3,7,8,9-H>	-13C CDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.26 1.28 1.32	126 128 132	2,3,7,8-TCDD	-37Cl4	0.20	102
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.80 1.07	180 107				
1,2,3,4,6,7,8-HpCDD	1.00	1.93	193				
OCDF OCDD	2.00 2.00	2.87 8.40	144 420				

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spiked Sample Report

Client - ESN Pacific

Client's Sample ID Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	1029 U14 10.0 U14 U14	0224		Matrix Dilution Extracted Analyzed Injected By	Soil NA 02/27/201 03/04/201 SMT		
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.36	179	2,3,7,8-TCDF 2,3,7,8-TCDD	-13C	2.00 2.00	100 106
2,3,7,8-TCDD	0.20	0.21	103	1,2,3,7,8-PeC 2,3,4,7,8-PeC 1,2,3,7,8-PeC	DF-13C DD-13C	2.00 2.00 2.00	114 88 Y 121
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.36 1.47	136 147	1,2,3,4,7,8-H 1,2,3,6,7,8-H 2,3,4,6,7,8-H 1,2,3,7,8,9-H	(CDF-13C (CDF-13C (CDF-13C	2.00 2.00 2.00 2.00	98 98 107 96
1,2,3,7,8-PeCDD	1.00	1.07	107	1,2,3,4,7,8-H 1,2,3,6,7,8-H 1,2,3,4,6,7,8- 1,2,3,4,7,8,9-I	CDD-13C HpCDF-13C		88 84 82 84
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.35 1.36 1.33	135 136 133	1,2,3,4,6,7,8-I 0CDD-13C	HpCDD-13C	2.00 2.00 4.00	93 78
1,2,3,7,8,9-HxCDF	1.00	1.20	120	1,2,3,4-TCDD 1,2,3,7,8,9-H>		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.24 1.35 1.32	124 135 132	2,3,7,8-TCDD	-37Cl4	0.20	106
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.92 1.05	192 105				
1,2,3,4,6,7,8-HpCDD	1.00	2.01	201				
OCDF OCDD	2.00 2.00	3.01 9.02	150 451				

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spike Sample Results

Client - ESN Pacific

Client Sample ID	RHS-DU-20			Dry Weights	
Lab Sample ID	10257348006-S	Sample Filename	U140304B_07	Sample Amount	8.49 g
MS ID	10257348006-S-MS	MS Filename	U140304B_03	MS Ámount	8.9 g
MSD ID	10257348006-S-MSD	MSD Filename	U140304B_04	MSD Amount	8.5 g

	Sample Conc.	MS/MSD Qs	MS/MSD Qs MS Qm MSD Qm Background Subtracted					
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	9.118	0.20	0.34	0.36	5.9	129	141	9.1
2,3,7,8-TCDD	0.402	0.20	0.19	0.21	8.0	94	102	8.2
1,2,3,7,8-PeCDF	9.593	1.00	1.29	1.36	5.0	120	127	5.6
2,3,4,7,8-PeCDF	21.246	1.00	1.38	1.47	6.3	119	129	8.0
1,2,3,7,8-PeCDD	0.000	1.00	1.08	1.07	1.3	106	105	1.2
1,2,3,4,7,8-HxCDF	16.158	1.00	1.32	1.35	2.5	117	121	3.4
1,2,3,6,7,8-HxCDF	17.658	1.00	1.32	1.36	3.1	116	121	4.1
2,3,4,6,7,8-HxCDF	19.601	1.00	1.28	1.33	4.2	110	117	5.5
1,2,3,7,8,9-HxCDF	3.292	1.00	1.20	1.20	0.2	117	117	0.1
1,2,3,4,7,8-HxCDD	2.476	1.00	1.26	1.24	2.1	124	122	2.1
1,2,3,6,7,8-HxCDD	7.186	1.00	1.28	1.35	5.2	122	129	5.7
1,2,3,7,8,9-HxCDD	4.806	1.00	1.32	1.32	0.6	128	127	0.4
1,2,3,4,6,7,8-HpCDF	72.436	1.00	1.80	1.92	6.2	116	130	11.9
1,2,3,4,7,8,9-HpCDF	3.936	1.00	1.07	1.05	2.2	104	101	2.1
1,2,3,4,6,7,8-HpCDD	104.476	1.00	1.93	2.01	4.1	100	113	11.8
OCDF	62.070	2.00	2.87	3.01	4.6	116	124	6.7
OCDD	667.257	2.00	8.40	9.02	7.2	122	168	31.3

Definitions

MS = Matrix Spike MSD = Matrix Spike Duplicate Qm = Quantity Measured Qs = Quantity Spiked % Rec. = Percent Recovery RPD = Relative Percent Difference NA = Not Applicable NC = Not Calculated CDD = Chlorinated dibenzo-p-dioxinCDF = Chlorinated dibenzo-p-furanT = Tetra

Pe = Penta

Hx = Hexa

Hp = Hepta

O = Octa

APPENDIX D

ASBESTOS DISPOSAL MANIFEST

www.carrollcox.com 808-782-6627

r	\sim U	<i>ny</i>	9/SC					57	834
, 	÷ ;		BESTOS WAS	STE_SHI		T REC	ORD	_0 /	077
	1. Work S	te Name and N	Mailing Address (Gener	Owner's Name		Owners Telephone #			
ĺ				State of Hawaii					
	Radford Hig	h School- ACM	Disposal	Dept. of Ed	lucation		(808) 543-61	32	
	4361 Salt La	ake Blvd, Honol	ulu HI 96818					Agent	
	_	r's Name and /			-1		Remover's	Telephone	#
	Unitek Insul								
	P.O. Box 29							(808) 831-30	76
	Honolulu, H								4
G	PVT Land C		DS) Name and Physica	I Site Locatio	n		WDS Tele	ohone No.	
E N		rington Hwy.						(808) 668-45	61
E		1 96792-3749						(000) 000-40	51
R			EPA Office, local, state	or regional				·	
A		AP Region 9		-	liation & Indo	oor Air Brai	nch		
т		ne St., A-3-3	or	591 Ala Mo					
0	San Francis	co, CA 94105		Honolulu, F	II 96813				
R	5. HM	iD	Description	Hazard	Packing	6. Packa	ages	7. Total Qu	antity
		Number	of Material	Class	Group#	No.	Туре	m3	(yd3)
	Asbestos	NA2212	ACM Debris	9		5	Bags		•/
				<u> </u>					
	9 Energial	landling luntu	uctions and 24 Hour En		l		l de de ber Ore	<u> </u>	
	described ab	ove by proper si	ON: I hereby declare that hipping name and are clas port by highway accordin	ssified, packed	, marked, and	d labeled, a	nd are in all i	respects	·
	Note: Generation	ator must retain	a copy of this form.						
			Name and Title		Signat	ture (on be	ehalf of)	Month/E	Day/Year
	Sheena Sylv	va, Waste Man	ager		Lee	mm	Jula	02/14	1/2014
•••••	10. TRANSPOR	TER 1(ACKNOWLE	EDGEMENT OF RECEIPT OF N	ATERIALS) Not			copy/of this for	<u> </u>	/ /
Т			name and Title		h1. · 1	Signatur	A 1/		Day/Year
R	Unitek Insula	ation, LLC	AIKE AKI DA	ente	Mille	l (X	lu	2-20-	-14
Α		Address			Te	elephone i	No.		®
N	P.O. Box 29	177				(808)831-	-3076		
S	Honolulu, Ha								
Р			EDGEMENT OF RECEIPT OF N	ATERIALS) Not	e Transporter n				
0			name and Title			Signatur	e	Month/E	Day/Year
R T	Unitek Insula	Address	······································				NI		
Ē	P.O. Box 29					elephone (808)831-			
R	Honolulu, Ha					(000)031	-3070		
D			nment or Packaging					Rejec	ted
L								yes or	
			TE OWNER OR OPERA						
Р 0 ⁻			asbestos materials cov name and Title	ered by this r	nanifest exc	cept as no Signatur		12. Month/D	avNoo-
	' E	r mileur rypea	name anu Thie		1 D	Signatur	5		аултеаг
A	_ LAHE	LA ROMENA	A WEIGHMAS	TER	×.	Ree		FEB 20	2014
L					(/ ′ ′	Tome	na		

www.carrollcox.com 808-782-6627

For the benefit of business and people

www.us.bureauveritas.com www.carrollcox.com 808-782-6627