Final Project Report Phase II Confirmatory Sampling 84-acre Former Voice of America Site

Maili, Oahu, Hawaii

Prepared for:

U.S. Coast Guard Civil Engineering Unit 300 Ala Moana Blvd., Room 8-134 Honolulu, HI 96850

Contract No: HSCG86-09-C-6XA003

Prepared by:

July 2011

Executive Summary

Element Environmental, LLC (E2) completed an environmental site characterization of the former Voice of America (VOA) site, located in Maili on the western side of the island of Oahu, Hawaii. The site has an area of approximately 89 acres and is located southeast of the intersection of Kulaaupuni Street and the Maili Channel. A 5-acre portion of the former VOA site is currently leased by the State of Hawaii and has been developed for transitional housing. The remainder of the former VOA site is the 84-acre project site. The project site is currently vacant and is bounded by Kulaaupuni Street to the west, the northern portion of Maili Channel (formerly Holt Road) to the north, a vacant property to the east and residential housing along Kulawae Street to the south.

A conceptual site model (CSM) developed for the site identified future construction workers and residential users as potential receptors that may be exposed to soils that have been impacted by historical uses. The results of this site characterization may be used to help determine if design considerations and/or other precautions must be implemented to protect human health during the construction phase and future use of the site due to the presence of contamination.

Multi-increment (MI) soil sampling strategies, discrete grid sampling, and groundwater sampling were employed to characterize the project site. Five investigation areas were selected based on historical use and topography. A systematic random sampling scheme was utilized to determine the increment sampling locations for MI soil samples. Collection of samples was as follows:

- 4-Acre Transmitter Buildings Area This decision unit (DU) encompassed the former site of the VOA broadcast transmitter buildings. MI surface soil samples were collected from 30 increment sample locations located throughout the DU and analyzed for Polychlorinated Biphenyls (PCBs), Resource Conservation and Recovery Act (RCRA) metals, Total Petroleum Hydrocarbons as Gasoline (TPH-G), TPH as Diesel (TPH-D), TPH as Oil and Grease (TPH-O), and asbestos. After the initial sampling, this investigation area was further subdivided into five DUs and five MI surface soil samples were collected and analyzed for PCBs and lead.
- The large concrete slab foundation within the Transmitter Buildings Area was divided into seven (7) DUs, which were sampled to determine the presence of PCB contamination in the concrete surface. Three (3) discrete soil samples were also collected from beneath the concrete slab to determine the presence of organochlorine pesticide contamination.
- 80-Acre Area outside of the Transmitter Buildings Area MI surface soil samples from 20 DUs within this investigation area were collected. Each sample was collected from 30 increment sample locations and analyzed for PCBs and RCRA metals.
- Previously Identified PCB-Contaminated Area This investigation area encompassed the subset of the Transmitter Buildings Area that was previously identified as contaminated with PCBs. Two hundred forty-two (242) discrete sampling locations were advanced up to 2 or 4 feet in depth within an approximately 200-foot by 250-foot sampling grid to determine the lateral and vertical extent of PCB contamination.
- Berms and Mounds This investigation area consisted of berms and mounds found throughout the project site. An electromagnetic survey was completed to determine if construction debris or other solid waste had been disposed and buried within the berms

and mounds. The berms and mounds were also trenched and sampled to determine the presence and extent of associated contamination. Twenty (20) MI soil samples were collected from berms and mounds at the investigation site and were analyzed for PCBs and RCRA metals.

 Groundwater - Six groundwater monitoring wells were installed surrounding the Transmitter Buildings Area to determine if historic use of the investigation site resulted in contamination of groundwater. Groundwater samples were collected and analyzed for PCBs, RCRA metals, and petroleum related contamination (including Benzene, Toluene, Ethylbenzene, and Xylenes [BTEX]; Methyl Tert-Butyl Ether [MTBE]; Polynuclear Aromatic Hydrocarbons [PAHs]; and Halogenated Volatile Organic Compounds [HVOCs]).

The MI soil samples from the 4-acre Transmitter Buildings Area were collected on July 31, 2009 and December 29, 2009. The MI soil samples from the 80-acre area outside of the Transmitter Buildings Area were collected on July 30 and 31, 2009. The discrete soil samples from the previously identified PCB-contaminated areas were collected on July 28 through July 30, August 5 and 18, and September 17, 2009 as well as May 27 and September 1, 2010. The MI soil samples from the berms and mounds were collected on August 25 and 26, 2009. The groundwater samples were collected on August 13, 2009.

Previously Identified PCB-Contaminated Area

Three hundred eighty-three (383) primary soil samples and 46 duplicates were collected from 242 sampling nodes within an approximately 200-foot by 250-foot sampling grid area surrounding the two previously identified PCB-contaminated areas. Discrete soil sampling results indicate that PCB contamination is present in surface and subsurface soil down to 4 feet below ground surface (bgs) in the 200-foot by 250-foot sampling grid area. A significant portion of this sampling grid area contains PCB levels that exceed U.S. Environmental Protection Agency (EPA) Residential Regional Screening Levels (RSLs) and State of Hawaii Department of Health (HDOH) Unrestricted Land Use Environmental Action Levels (EALs). Estimated soil volumes containing PCB concentrations that exceed various contamination thresholds are presented in Table 5-1. The distributions of PCB contaminated soil above the various thresholds within the sampling grid area are displayed on Figures 5-2 through 5-5.

4-Acre Transmitter Buildings Area

The MI surface soil sample results from the initial DU that encompassed the Transmitter Buildings Area indicated the presence of PCB Aroclor 1260, arsenic, and lead above their respective EPA Residential RSLs and HDOH Unrestricted Land Use EALs. However, arsenic results were below the HDOH assumed background level of 20 milligrams per kilogram (mg/kg).

After the initial sampling, this investigation area was further subdivided into five DUs and five MI surface soil samples were collected and analyzed for PCBs and lead. The MI sample results from the five DUs indicate that one of the five DUs contains PCB Aroclor 1260 at a concentration greater than both the EPA Residential RSL and the HDOH Unrestricted Land Use EAL. This DU surrounds the PCB-contaminated area targeted by the discrete sampling. Taking into consideration all the grid expansions, the grid appears to be fully characterized. The data also indicates that PCB contamination above the HDOH Unrestricted Land Use EAL is bounded by this DU. The lead sample results from all five DUs were below the EPA Residential RSL and HDOH Unrestricted Land Use EAL.

Six (6) of the seven (7) MI sample results from the concrete slab foundation within the Transmitter Buildings Area contain PCB contamination at levels in exceedance of EPA Residential RSLs and HDOH Unrestricted Land Use EALs. Concrete DU analytical results are displayed on Figure 5-8.

Analytical results of soil samples collected from beneath the concrete slab indicate the that 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT are present but at levels below both EPA Residential RSLs and HDOH Unrestricted Land Use EALs.

80-Acre Area outside of the Transmitter Buildings Area

PCB Aroclor 1260 was detected in eight of the 20 DUs at well below the EPA Residential RSL and the HDOH Unrestricted Land Use EAL. Arsenic was detected in all 20 MI samples at concentrations above the EPA Residential RSL and the HDOH Unrestricted Land Use EAL, but below the HDOH assumed background level.

Berms and Mounds

PCB Aroclor 1260 was detected in five out of the 20 berms at concentrations well below the EPA Residential RSL and the HDOH Unrestricted Land Use EAL. Arsenic was detected in all 20 samples at concentrations above the EPA Residential RSL and the HDOH Unrestricted Land Use EAL, but below the HDOH assumed background level.

Chromium was detected in all 20 berm samples, nine of which were at levels above the EPA Residential RSL. Those nine sample results were still below the HDOH Unrestricted Land Use EAL.

Groundwater

Groundwater sample results indicate that trace levels of petroleum contamination are present in the groundwater surrounding the Transmitter Buildings Area. However, the levels detected are orders of magnitude lower than the HDOH Groundwater Action Levels (GALs).

In conclusion, this site characterization has identified PCB contamination in surface and subsurface soil down to 4 feet below ground surface in the 200-foot by 250-foot sampling grid area within the Transmitter Buildings Area. A significant portion of this sampling grid area contains PCB levels that exceed EPA Residential RSLs and HDOH Unrestricted Land Use EALs. The DU immediately surrounding this grid area also contains PCBs in exceedance of both the EPA Residential RSL and the HDOH Unrestricted Land Use EAL. Taking into consideration all the grid expansions, the grid appears to be fully characterized. The data also indicates that PCB contamination above the HDOH Unrestricted Land Use EAL is bounded by this DU.

MI soil sampling results from areas outside of the Transmitter Buildings Area including results from the berms and mounds do not indicate the presence of PCB and metals contamination above EPA Residential RSLs and HDOH Unrestricted Land Use EALs. Groundwater sampling results do indicate the presence of petroleum hydrocarbons in the groundwater but at levels significantly lower than the HDOH GALs.

Table of Contents

Section	Page
List of Acronyms	iii
Section 1 Introduction	1-1
1.1 Project Identification and Approvals1.2 Project Purpose1.3 Report Organization	1-2
Section 2 Location, Description, and Site Setting	2-1
 2.1 Site Location and Description 2.2 Site Setting	2-1 2-1 2-1
Section 3 Conceptual Site Model	3-1
 3.1 Project Background and Historical Site Use 3.2 Previous Investigations 3.3 Conceptual Site Model	3-1 3-10
Section 4 Site Characterization Field Tasks	4-1
 4.1 Characterization Activities	4-1 4-1
Section 5 Sample Analysis and Characterization Results	5-1
 5.1 Data Evaluation Criteria 5.2 Soil Sample Analysis Results	5-1 5-13 5-23 5-25 5-25 5-27 5-28
Section 6 Data Quality Assessment and Quality Control	6-1
 6.1 Field Sampling Quality Control 6.1.1 Field Duplicates 6.1.2 Field Replicates 6.1.3 Sample Handling and Custody 6.1.4 Deviations of Field Standard Operating Procedures 6.2 Analytical Quality Control/Procedures 6.2.1 Laboratory Analytical Procedures 6.2.2 Deviations from Laboratory Standard Operating Procedures 	6-1 6-2 6-4 6-4 6-4 6-4

Section 7 Summary and Conclusions	7-1
7.1 Summary	7-1
7.1.1 Investigation Area Analytical Results	7-2
7.2 Conclusions	
Section 8 References	8-1

Tables

Table 4-1:	Soil and Groundwater Sample and Analysis Summary	4-6
Table 5-1:	Estimated Total Volume of Contaminated Soil	5-2
Table 5-2:	Initial Four-Acre Transmitter Buildings Area DU Soil Sample Results	
	Summary	5-13
Table 5-3:	Follow-up DUs within the Four-Acre Transmitter Buildings Area Soil Sample	
	Results Summary	5-19
Table 5-4:	Concrete Slab Sample Results	5-19
Table 5-5:	Beneath Concrete Slab Soil Sample Results	5-20
Table 5-6:	81-Acre Area outside of the Transmitter Buildings Area Soil Sample Results	
	Summary	5-24
Table 5-7:	Berms and Mounds Soil Sample Results Summary	5-26
Table 5-8:	Groundwater Sample Results Summary	5-28

Figures

	0
Site Location Map2-	3
Areas of Concern Previously Identified	-5
Conceptual Site Model3-1	1
PCB Sampling Grid and Monitoring Well Locations	5
Decision Units	7
Berm Locations	9
Estimated Area of PCB Concentrations That Exceed EPA Residential RSL 5-	5
U 1 <i>j</i>	
•	
o ,	
Concrete Slab Decision Units – PCB Analytical Results	1
	Site Location Map

Appendices

Appendix A	Project Photographs
Appendix B	Project Field Notes
Appendix C	Sample Analytical Results Summary Tables
Appendix D	Analytical Laboratory Reports
Appendix E	RSD Evaluation Tables
	DCD Conserver Date

List of Acronyms

°C	Degree Celeiue
°F	Degree Celsius
-	Degree Fahrenheit
ACM	asbestos-containing material
AST	aboveground storage tank
bgs	below ground surface
BTEX	Benzene, Toluene, Ethylbenzene, and Xylenes
CEU	Civil Engineer Unit
COC	chain of custody
COPC	Contaminant of Potential Concern
CSM	Conceptual Site Model
DRO	Diesel Range Organics
DU	decision unitE2 Element Environmental, LLC
EAL	Environmental Action Level
EDDA	Environmental Due Diligence Audit
EPA	United States Environmental Protection Agency
ESA	Environmental Site Assessment
GAL	Groundwater Action Level
GPR	ground penetrating radar
GPS	Global Positioning System
GRO	Gasoline Range Organics
GSA	General Services Administration
HDOH	State of Hawaii Department of Health
HVOC	Halogenated Volatile Organic Compound
LBP	lead-based paint
MACTEC	MACTEC Engineering and Consulting, Inc.
µg/L	microgram per liter
mg/kg	milligram per kilogram
mg/L	milligram per liter
MI	multi-increment
MTBE	Methyl Tertiary Butyl Ether
MW	monitoring well
NA	not applicable
ND	non-detect
NELAC	National Environmental Laboratory Accreditation Conference
NRTF	Naval Radio Transmitter Facility
NS	No Standard
PAH	Polynuclear Aromatic Hydrocarbon
PCB	Polychlorinated Biphenyls
	part per million
ppm	• •
PRG PVC	Preliminary Remediation Goal
	polyvinyl chloride
QA QA/QC	Quality Assurance
QA/QC	Quality Assurance/Quality Control
QC	Quality Control
RCRA	Resource Conservation and Recovery Act
RPD	Relative Percent Difference
RRO	Residual Range Organics
RSD	Relative Standard Deviation

RSL SSHO SSHP SVOC TPH TPH-D TPH-G TPH-O TSCA UCL U.S. USCG USDA UST VOC WP	Regional Screening Level Site Safety and Health Officer Site Safety and Health Plan Semi-Volatile Organic Compound Total Petroleum Hydrocarbon Total Petroleum Hydrocarbon as Diesel Total Petroleum Hydrocarbon as Gasoline Total Petroleum Hydrocarbon as Oil and Grease Toxic Substances Control Act Upper Confidence Limit United States United States Department of Agriculture underground storage tank Volatile Organic Compound Work Plan

Section I Introduction

I.I Project Identification and Approvals

Project Name:	Phase II Confirmatory Sampling, 84-Acre Portion of the Former Voice of America Site, Maili, Oahu, Hawaii
Contract Number:	HSCG86-09-C-6XA003
Company and Address:	Element Environmental, LLC 98-030 Hekaha St. Unit 9 Aiea, HI 96701 Ph: (808) 488-1200; Fax: (808) 488-1300
E2 Project Number:	090010
Date of Issue:	July 2011

Approvals:

Roger Aoki, Primary Author, Element Environmental, LLC

Ryan Yamauchi, President, Element Environmental, LLC

July 21, 2011 Date

July 21, 2011 Date

I.2 Project Purpose

This report presents the results of a site characterization conducted at an 84-acre portion of the former Voice of America (VOA) site in Maili, Oahu, Hawaii.

Element Environmental, LLC (E2) conducted surface soil, subsurface soil, and groundwater sampling at the site in order to determine if past uses have impacted the site. Impacted soil and groundwater may affect future uses at the site and require further remedial action prior to redevelopment. The sampling results are intended to help determine if design considerations and/or other precautions must be implemented in order protect the health of future construction workers and future residents from the presence of contamination (if any).

This report has been prepared by E2 for the United States Coast Guard (USCG), Civil Engineering Unit (CEU) under Contract No. HSCG86-09-C-6XA003 and is based on the scope of work entitled "*Phase I Environmental Site Assessment & Phase II Confirmatory Sampling for 84 Acres of the Former Voice of America Site in Maili, Hawaii*" dated January 12, 2009 and modifications 1 through 8.

This site characterization was developed in accordance with industry standards and United States Environmental Protection Agency (EPA) guidelines for sampling and analysis. All work was conducted by E2 and E2's subcontractors in accordance with the project-specific Work Plan (WP) submitted under separate cover (E2, 2009c) and as directed in applicable scope of work modifications.

I.3 Report Organization

This report is organized into the following sections:

- Section 1 Introduction
- Section 2 Location, Description, and Site Setting
- Section 3 Conceptual Site Model
- Section 4 Site Characterization Field Tasks
- Section 5 Sample Analysis and Characterization Results
- Section 6 Data Quality Assessment and Quality Control
- Section 7 Summary and Conclusions

Section 2 Location, Description, and Site Setting

2.1 Site Location and Description

The former VOA site is located in Maili on the western side of the island of Oahu, Hawaii. The Tax Map Key number for the site is (1) 8-7-010:007. The former VOA site has an area of approximately 89-acres and is located southeast of the intersection of Kulaaupuni Street and the Maili Channel. A 5-acre portion of the former VOA site is currently leased by the State of Hawaii and has been developed for transitional housing. The remainder of the former VOA site is currently vacant and is bounded by Kulaaupuni Street to the west, the northern portion of the Maili Channel (formerly Holt Road) to the north, a vacant property to the east, and residential housing along Kulawae Street to the south (Figure 2-1).

2.2 Site Setting

2.2.1 Climate

The climate in Maili is warm and relatively dry. Data from the University of Hawaii School of Ocean and Earth Science and Technology and the Department of Meteorology shows an average temperature range between 72.1 degrees Fahrenheit (°F) and 79.7°F with temperature extremes ranging between from 45°F and 96°F. The average annual precipitation in the Maili area is approximately 21 inches.

2.2.2 Geology

2.2.2.1 Regional Geology

The project site is located on the western slopes of the Waianae Range. The Waianae Range is one of two shield volcanoes on the island of Oahu. The Waianae Range rises 1.2 kilometers above sea level, making it higher than the younger, adjacent Koolau Range. The Waianae and Koolau volcanic shields were built during the late Pliocene and early Pleistocene Epochs by thinly bedded lava flows. The main shield building activities ceased approximately 3.5 to 2.5 million years ago (Stearns, 1985).

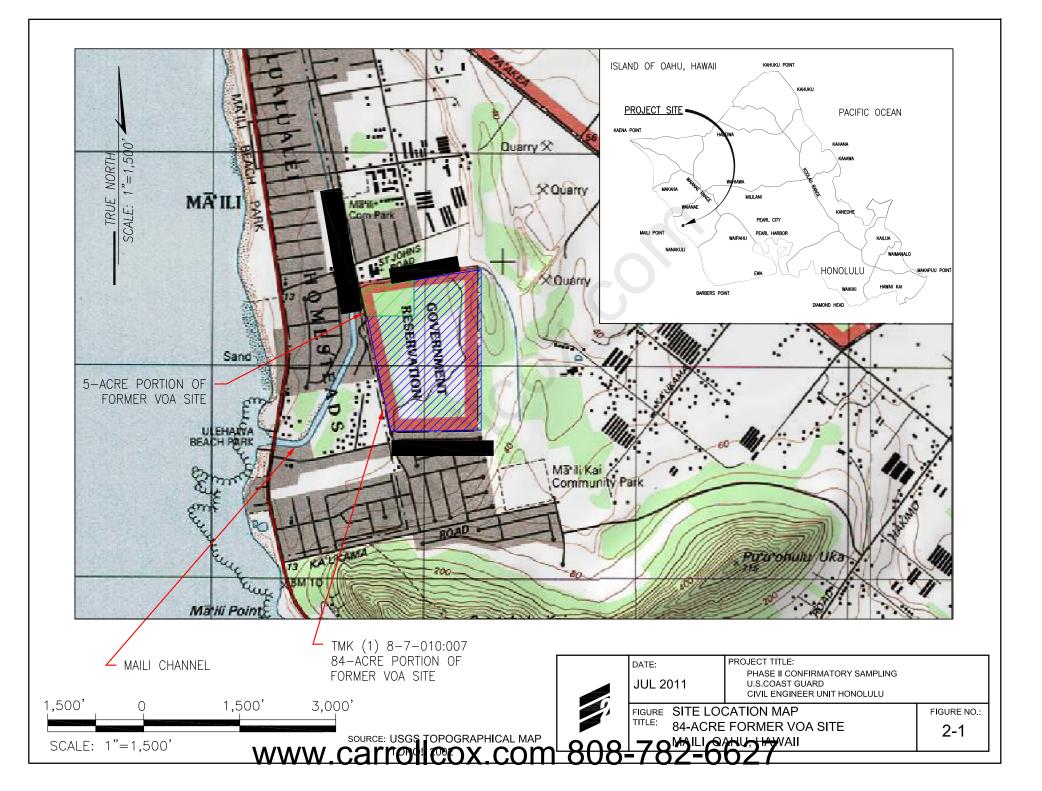
The Waianae Volcanic Series is divided into lower, middle, and upper members. The lower member is made up of the lava flows and pyroclastics that built the main mass of the Waianae shield; the middle member is mainly rocks that accumulated in the caldera, gradually filling it; and the upper member is a thin cap that has covered much of the shield late in its history. The volcano is now extensively eroded, bearing large amphitheater valleys on its western slopes. These valleys (such as Lualualei where the subject parcel is located) are some of the largest in Hawaii, and they are believed to represent the sources for large landslides now seen on the sea floor to the west of the island (Stearns, 1985).

2.2.2.2 Site Geology and Soils

According to the United States (U.S.) Soil Conservation Service, the soil in the area of the project site is classified as Mamala stony silty clay loam, Mokuleia clay, and Keaau stony clay (United States Department of Agriculture [USDA], 2008).

- The Mamala series consists of shallow, well-drained soils on coastal plains on the island of Oahu. These soils formed in recent alluvium deposited over coral limestone and consolidated calcareous sand. Permeability is moderate; runoff is very slow to medium; and the erosion hazard is slight to moderate.
- The Mokuleia series consists of well-drained soils on coastal plains on the island of Oahu. These soils formed in recent alluvium deposited over coral sand. Permeability is slow on the surface layer and rapid in the subsoil; runoff is slow; and the erosion hazard is no more than slight.
- The Keaau series consists of poorly-drained soils on coastal plains on the island of Oahu. These soils developed in alluvium deposited over reef limestone or consolidated coral sand. Permeability is slow; runoff is slow; and the erosion hazard is no more than slight (USDA, 2008).

2.2.3 Hydrogeology


2.2.3.1 Regional Hydrogeology

Groundwater resources beneath the project site are part of the Lualualei aquifer system of the Waianae Aquifer Sector (Mink and Lau, 1990). Two aquifers are present below the area of the subject property.

- The upper aquifer is basal, where fresh water is in contact with sea water and unconfined, where the water table is the upper surface of the saturated aquifer. The aquifer is sedimentary, where the soil has a non-volcanic lithology. The aquifer is listed as having moderate salinity (1,000 to 5,000 milligrams per liter [mg/L] of chloride), with a high vulnerability to contamination, and is considered to be irreplaceable. The aquifer is currently used, but is neither a drinking water source nor ecologically important.
- The lower aquifer is basal, where fresh water is in contact with sea water and confined, where the aquifer is bounded by impermeable or poorly permeable formations. The aquifer is in dike compartments. The aquifer is listed as having moderate salinity (1,000 to 5,000 mg/L of chloride), with a low vulnerability to contamination, and is considered to be replaceable. The aquifer has the potential to be used, but is neither a drinking water source nor ecologically important (Mink and Lau, 1990).

2.2.3.2 Site Hydrogeology

Based on regional topography, the regional groundwater flow direction is expected to be north and west toward the Maili Channel. The nearest drinking water supply well is located over three-and-a-half miles northwest of the project site (E2, 2009a).

Section 3 Conceptual Site Model

3.1 Project Background and Historical Site Use

The 84-acre project site consists of a portion of the former VOA site. Documents and aerial photographs indicate that the 89-acre site was part of a 93-acre condemnation by the U.S. State Department in 1949. The 93-acre site appeared to have operated as an antenna relay station from as early as 1944 through 1971. The U.S. State Department utilized the relay station to transmit VOA broadcasts.

By 1971, the U.S. State Department discontinued use of the facility and utilized the General Services Administration (GSA) to find a new user. Four acres of the site was transferred to the City and County of Honolulu for the construction of the Maili Channel. The USCG initially accepted the remaining 89-acre portion of the facility with the intention of using it as a Long Range Radio Station. However, the USCG later determined that its existing facility at the Naval Radio Transmitter Facility (NRTF) Lualualei was suitable for its needs and again requested the GSA assist to find a new user.

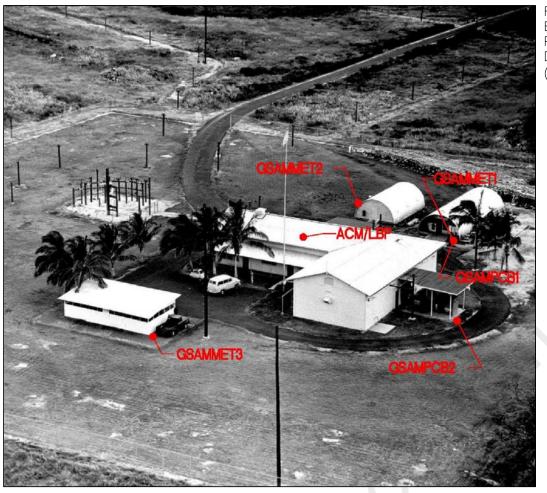
By 1986, all but one of the six transmitter buildings within the 4-acre portion (herein referred to as the Transmitter Buildings Area) of the former VOA site were demolished. The last building was demolished by the USCG in 1989. A chained link fence was installed around a portion of the Transmitter Buildings Area in 2008 after sampling indicated contamination in the area (see following Section 3.2). The remaining building remnants within the fenced area were removed in December 2009 leaving only the concrete foundations.

In 2007, the State of Hawaii, announced plans to utilize a 5-acre portion of the former VOA site at its northwest corner to construct a transitional village to ease the homeless situation facing the State. Construction of the transitional village began in 2008 and was completed in 2009.

3.2 Previous Investigations

In order to facilitate the lease of the 5-acre portion of the former VOA site to the State of Hawaii for construction of the transitional village, the GSA hired MACTEC Engineering and Consulting, Inc. (MACTEC) to complete a Phase I Environmental Site Assessment (ESA) of the 5-acre site. The Phase I ESA was completed in March 2007 and concluded that no recognized environmental conditions existed at the 5-acre site (MACTEC, 2007a).

The GSA also retained MACTEC to complete a Phase I ESA of the remaining 84 acres of the former VOA site. The Phase I ESA was also completed in March 2007 and concluded the following:

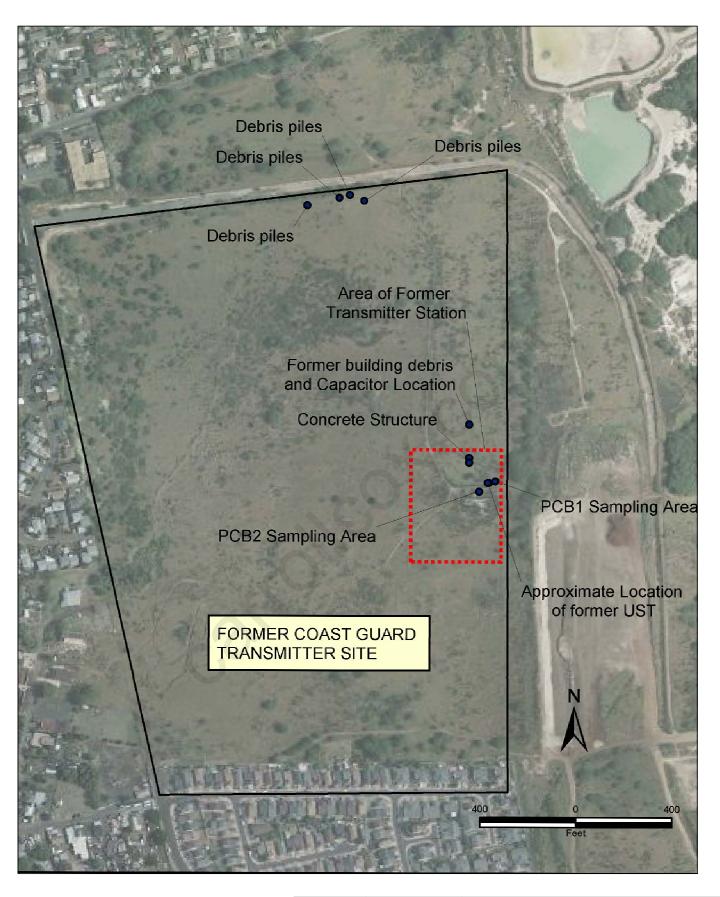

- Debris and remnants of the former transmitter buildings were observed on site. Other wood, metal (including abandoned cars and household appliances), and concrete debris were strewn around the former buildings.
- The buildings were constructed in 1948. Therefore, asbestos-containing materials (ACM), lead-based paint (LBP), and polychlorinated biphenyl (PCB) and mercury-containing electrical equipment may be present in the debris.

• According to information provided by the GSA, underground storage tanks (USTs) may have been present onsite; however, no records of the USTs were found and the USCG personnel interviewed had no knowledge of any USTs (MACTEC, 2007b).

Based on their findings, MACTEC recommended that a metal detector survey be conducted near the former buildings to determine the possible presence of USTs. They also recommended that buildings debris/remnants be tested for asbestos, PCBs, and metals prior to removal and disposal.

Following the Phase I ESA, MACTEC was contracted by the GSA to complete Phase II ESA sampling at the 84-acre site. The Phase II ESA sampling was generally concentrated within the Transmitter Buildings Area. The Phase II ESA Report completed in July 2007 indicated the following:

- Building materials/debris including white faded vinyl floor tiles, silver coat/paint on corrugated panels, and gray corrugated panels were found to contain asbestos. Approximately 500 square feet of each material was detected. The materials were observed in the debris scattered throughout the former building area of the site.
- LBP was detected in paint chips on the concrete walls of the former buildings.
- Two surface soil samples (GSAMPCB1 and GSAMPCB2) were collected and analyzed for PCBs. Sample locations were selected based on information obtained from photographs for the Transmitter Buildings Area that showed the presence of a former gasoline pump and perhaps a former generator or machinery that was stored under a covered shelter (Figure 3-1). The results indicated the presence of PCB Aroclor 1260 at concentrations of 3,200 and 2.61 milligrams per kilogram (mg/kg), respectively. These results exceeded the EPA Region 9 Preliminary Remediation Goal (PRG) for Residential Use (0.22 mg/kg) published at that time.
- Three surface soil samples were collected from the former building areas and analyzed for the eight Resource Conservation and Recovery Act (RCRA) metals (Figure 3-2). The concentrations in all three samples did not exceed their respective EPA Region 9 PRGs for Residential Use.
- A ground penetrating radar (GPR) survey was conducted. The survey identified an
 object measuring approximately 4.5 feet by 11 feet buried in the area of the former
 gasoline pump. The object was suspected to be a former fuel UST. The survey also
 identified a void near the north side of the investigation area that was suspected to be
 the location of a former cesspool, and several discontinuous lines that are characteristic
 of abandoned underground utility lines (MACTEC, 2007c).



FORMER TRANSMITTER STATION BUILDINGS WITH MACTEC PHASE II SAMPLING LOCATIONS DIRECTION: FACING NORTHWEST (MACTEC, 2007)

FORMER TRANSMITTER STATION BUILDING WITH TRANSFORMERS ALONG NORTHERN SIDE OF THE BUILDING DIRECTION: FACING SOUTHWEST (MACTEC, 2008)

SOURCES: MACTEC, 2007 DRAFT REPORT OF PHASE II ACTIVITIES MACTEC, 2008 SUPPLEMENTAL PHASE WAWAESCATTOILCOX.COM 808-782-6627

Based on the Phase II ESA findings, MACTEC conducted Supplemental Phase II ESA sampling. The Supplemental Phase II ESA Report completed in May 2008 indicated the following:

- During a site reconnaissance prior to sampling, USCG personnel found a capacitor in a mound just to the north of the Transmitter Buildings Area (Figure 3-2). The mound was suspected to potentially contain building debris, and was not evident in aerial photographs taken in 1986 (prior to the building demolition in 1989). A sample from the capacitor resulted in the detection of PCB Aroclor 1254 at a concentration of 410,000 mg/kg.
- During the site reconnaissance, piles of debris were also observed to the north of the Transmitter Buildings Area beyond the access road (Figure 3-2). The debris contained building materials and what appeared to be several automobile batteries. The source of the debris was unknown.
- The anomaly identified during the GPR survey was confirmed to be a 500-gallon UST (Figure 3-2). The UST was removed and disposed. No evidence of holes in the tank or stained soil in the excavation was observed. Groundwater was not encountered in the excavation, which extended to approximately 6 feet below ground surface (bgs). Two confirmatory soil samples were collected from the north and south ends of the excavation and analyzed for total petroleum hydrocarbons as gasoline (TPH-G), diesel (TPH-D), and oil and grease (TPH-O); and for volatile organic compounds (VOCs). TPH-G and VOCs were not detected in either sample. TPH-D and TPH-O were detected, but at levels below the State of Hawaii Department of Health (HDOH) soil action levels. After backfilling the excavation, one boring was advanced to 20 feet bgs in the excavation area and one groundwater sample was collected from the boring and analyzed for TPH-G, TPH-D, and VOCs. The groundwater sample results were all non-detect (ND).
- A subsurface investigation was completed, which consisted of the sampling at four step out locations, one in each direction (i.e., north, south, east, and west), at a distance of approximately five feet from the two original sampling locations (GSASAMPCB1 and GSASAMPCB2) where PCBs were previously detected. Samples were collected at the surface and at a depth of approximately 2 feet bgs. Additionally, two of the borings (one downgradient boring at each PCB sampling location) were advanced up to five feet below encountered groundwater (to 15 feet bgs) and grab groundwater samples were collected from each of the boreholes. PCB Aroclor 1260 was detected in all 16 soil samples. Thirteen (13) of the soil samples exceeded the EPA Region 9 PRG for PCBs for Residential Use (0.22 mg/kg) published at that time. PCBs were also detected in one of the groundwater samples (GSASAMPCB1) at a concentration of 2.36 micrograms per liter (µg/L), which is above the EPA Primary Drinking Water Standard of 0.5 µg/L. It should be noted that the sampling location for GSASAMPCB2 is shown to be located to the north of the transmitter building in the Supplemental Phase II ESA Report (Figure 3-2), but is shown to be located to the east of the transmitter building in the Phase II ESA Report (Figure 3-1).
- A concrete structure was observed to the north of the former transmitter building (Figure 3-2). The structure consisted of concrete curbing enclosing a square area (sides of about 5 feet) with what appeared to be traffic bollards on each corner. The center of the area consisted of soil. The use of the concrete structure was not identified. One soil

boring was drilled to a depth of 20 feet bgs in the immediate downgradient vicinity of the concrete structure. One soil sample from about 5-6 feet bgs and one grab groundwater sample were collected and analyzed for TPH-G, TPH-D, and VOCs. None of the constituents analyzed were detected in the soil or groundwater samples (MACTEC, 2008).

As the landowner of the property, the USCG contracted E2 to complete an Environmental Due Diligence Audit (EDDA) Phase I Liability Assessment of the 5-acre parcel being leased to the State of Hawaii. The EDDA Phase I Liability Assessment Report completed in January 2009 indicated the following:

 Although past sampling had been limited to the Transmitter Buildings Area, the lateral and vertical extent of contaminants such as PCBs had not been established. In addition, the 5-acre project site provided one of the more convenient routes of access to and from the Transmitter Buildings Area. Therefore, there is a possibility that equipment may have been disposed on or near the 5-acre project site and/or soil particulates may have been tracked onto the project site. There is no specific evidence to indicate that PCBs or PCB-containing equipment were disposed at the project site; however, due to the nature and extent of other PCB-containing electrical equipment disposed at the adjacent Transmitter Buildings Area, PCBs and other similar contamination in the soil and groundwater are considered to be potential hazardous waste concerns at the project site (E2, 2009a).

Following the EDDA Phase I Liability Assessment, E2 was contracted by the USCG to complete Phase II confirmatory sampling at the 5-acre site. The Phase II Confirmatory Sampling Report completed in January 2009 indicated the following:

- A multi-increment (MI) soil sampling approach was used to characterize the residual levels of contaminants in the surface soils at the project site. The 5-acre site was divided into three decision units (DUs) approximately 1.6 acres in size with one MI surface soil sample and two replicates collected from each DU. The MI samples were analyzed for PCBs and heavy metals. The results of the MI sampling analyses indicated the following:
 - 1. PCBs, arsenic, cadmium, selenium, and silver were not detected in any of the nine MI samples.
 - 2. Barium, chromium, and mercury were detected in all nine MI samples.
 - 3. Lead was detected in two of the nine MI samples.
 - 4. None of the detected metals concentrations exceeded the respective HDOH Environmental Action Levels (EALs) and EPA Region 9 Residential PRGs.
- One groundwater sample was also collected from an open trench at the site to determine if the shallow groundwater has been impacted with PCBs and petroleum-related contaminants. The results of the laboratory analyses indicated the following:
 - 1. TPH-G, TPH-D, TPH-O, benzene, ethylbenzene, xylene, methyl tertiary butyl ether (MTBE), halogenated volatile organic compounds (HVOCs), semi-volatile organic compounds (SVOCs), and PCBs were not detected.

- 2. Toluene was detected at a concentration of 2.55 μ g/L, which is well below the HDOH GAL of 130 μ g/L.
- 3. Arsenic, barium, and chromium were detected below their respective HDOH GALs.
- 4. Selenium was detected at a concentration of 18 μ g/L, approximately three times higher than the HDOH GAL of 5 μ g/L.
- 5. Mercury was detected at a concentration of 0.12 μ g/L, approximately five times higher than the HDOH GAL of 0.025 μ g/L.

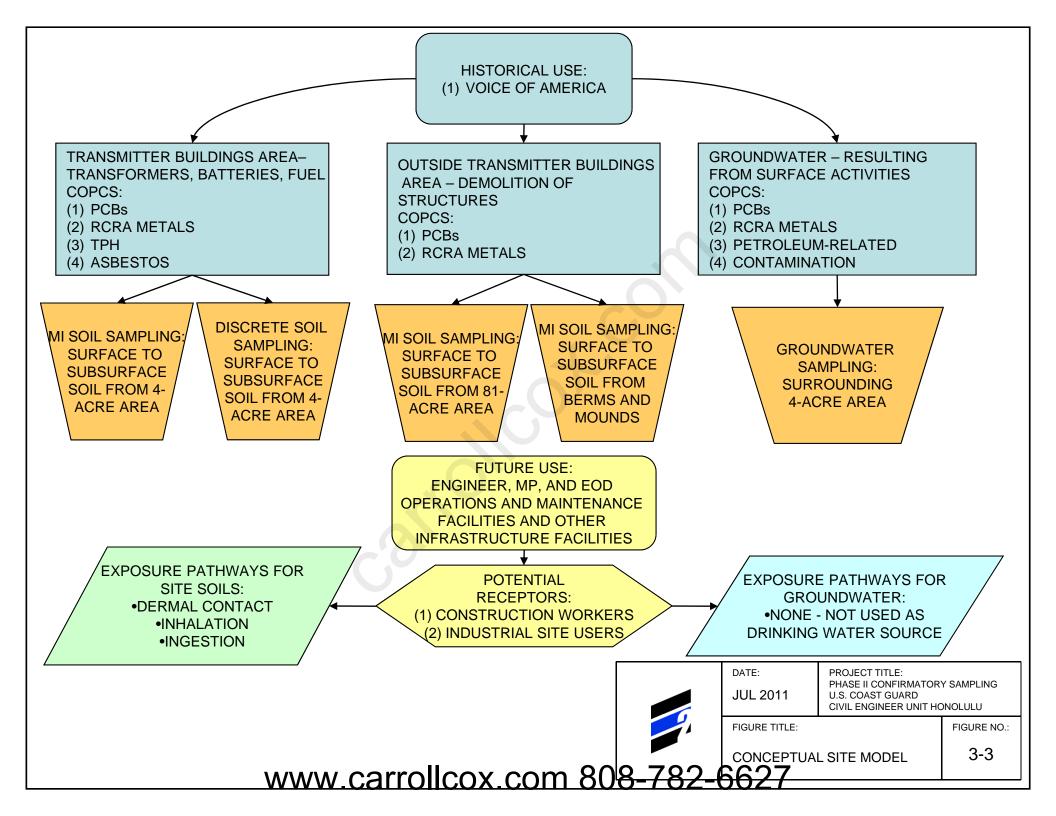
The EALs for both mercury and selenium are based on chronic Aquatic Habitat Goals. Considering that: (1) mercury was detected below EALs in site soils and selenium was not detected in site soils; (2) the Phase I ESA did not identify sources of mercury and selenium within the 5-acre site; and (3) similar levels of these two metals have been detected in coastal groundwater aquifers elsewhere on Oahu (CH2M Hill, 2003), it is believed that the low concentrations of mercury and selenium detected at the project site are related to regional background concentrations in the local calcareous aquifer.

• Based on the MI surface soil and the groundwater sample results, no further action was recommended for the 5-acre parcel (E2, 2009b).

As part of this current contract, E2 also completed an EDDA Phase I Liability Assessment of the 84-acre project site. The EDDA Phase I Liability Assessment report completed in January 2010 concluded the following:

- Due to the nature and extent of PCB-containing electrical equipment utilized and disposed at the transmitter facility, PCBs and other related contamination in the soil and groundwater are considered to be potential hazardous waste concerns at the project site.
- The remnants of demolished buildings remaining on site have been confirmed to contain ACM and LBP.
- In addition to the demolished buildings in the Transmitter Buildings Area, dozens of demolished radio antenna towers and soil mounds/berms are located throughout the project site.
- The assessment has revealed the presence of soil and groundwater contamination related to the former VOA transmitter facility. Outside of the 5-acre portion of the project site currently leased by the State of Hawaii, past sampling has focused on the identification of contaminants within the Transmitter Buildings Area. However, the sampling has not delineated the lateral and vertical extent of contaminants in the soil or groundwater at the Transmitter Buildings Area, nor has it evaluated contamination outside of the Transmitter Buildings Area. The 84-acre project site, including the mounds and berms, should be further evaluated for potential PCB and heavy metals contamination (E2, 2010).

3.3 Conceptual Site Model


As described above, the project site was used for VOA broadcasts from 1944 to 1971 and demolition of on-site structures was completed in 1989. Resulting environmental concerns from the historical use include the following:

- Building construction, repair, and demolition Possible releases of asbestos from ACM in building materials, such as vinyl floor tile, silver coat/paint, corrugated paneling, etc.
- PCBs from electrical equipment (e.g., capacitors and transformers, etc.) Potential introduction of PCBs into the soils as a result of broken, leaking, or abandoned capacitors and transformers.
- Lead from paints, batteries, or gasoline Introduction of lead from use of lead paints, leaded gasoline, or lead acid batteries either from maintenance, spillage, disposal, or during structure demolition.
- Former UST/Aboveground Storage Tank (AST) Accidental releases or leaks of petroleum may have impacted areas around the site where USTs or ASTs may have been located.

Potential future receptors at the project site include construction workers and future residents. Based on the nature of the contaminants of potential concern (COPCs), complete exposure pathways at the site include: (1) dermal contact with site soils; (2) inhalation of dust and SVOCs; and (3) incidental ingestion of site soils.

Based on the relatively low mobility of the COPCs and the absence of nearby groundwater production wells or surface water bodies, it is unlikely that the human receptors will come into direct contact with the groundwater present at the project site, with the exception of construction or trench workers. Since the upper aquifer beneath the site is not utilized as a potable water source, exposure to groundwater through drinking water resources is not considered a complete pathway for potential future receptors.

The complete conceptual site model (CSM) is presented on Figure 3-3.

3.4 Sampling Rationale

The objectives of the confirmatory sampling were as follows:

- to determine the lateral and vertical extent of PCB contamination in surface and subsurface soils at two areas within the Transmitter Buildings Area previously identified to contain PCBs;
- to determine if residual levels of COPCs resulting from historic use of the 4-acre Transmitter Buildings Area are present in the surface soils, in the concrete foundation, and soil directly beneath the concrete foundation;
- to determine if residual levels of COPCs resulting from historic use of the 80-acre site outside of the Transmitter Buildings Area are present in the surface soils;
- to determine if construction debris or other solid waste has been disposed and buried within soil berms and mounds onsite and if residual levels of COPCs resulting from such disposal are present in the soils; and
- to determine if residual levels of COPCs resulting from historic use of the 4-acre Transmitter Buildings Area are present in the groundwater.

Sampling areas were developed based on historic uses, previous sampling results, and potential migration pathways and/or accumulation points for chemical releases. Five investigation areas were identified for sampling as follows:

1. Previously Identified PCB-Contaminated Areas within the Transmitter Buildings Area

Assessment of the lateral and vertical extent of PCB contamination in surface and subsurface soils. Discrete sampling of surface and subsurface soil surrounding the previously identified locations of PCB contamination within the Transmitter Buildings Area was conducted to evaluate the nature and extent of contamination at the project site. Previously identified PCB-contaminated areas are presented on Figure 3-4.

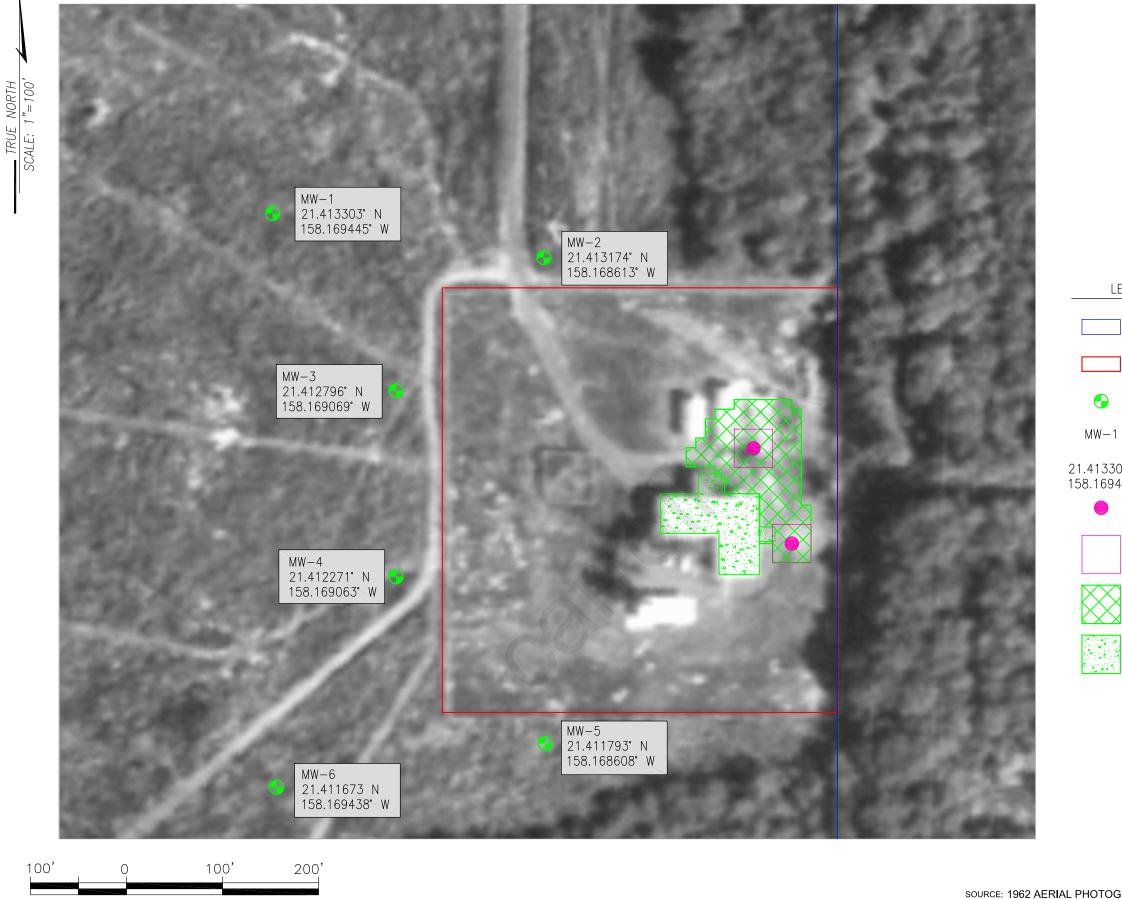
2. 4-Acre Transmitter Buildings Area

Assessment of the presence of PCBs, RCRA metals, TPH-G, TPH-D, TPH-O, and asbestos in surface soils. MI sampling was conducted to evaluate the nature and extent of contamination throughout the Transmitter Buildings Area. Boundaries of this DU are presented on Figure 3-5.

Assessment of the presence of PCBs in the concrete foundation. Composite sampling of concrete was conducted to evaluate the nature and extent of PCB contamination throughout the former Transmitter Building concrete foundation within the Transmitter Buildings Area. Photographs of the concrete foundation can be found in Appendix A.

Assessment of the presence of Pesticides directly beneath the concrete foundation. Discrete sampling of subsurface soil was conducted to evaluate the nature and extent of pesticide contamination directly beneath the former Transmitter Building concrete foundation within the Transmitter Buildings Area.

3. 80-Acre Area outside of the Transmitter Buildings Area


Assessment of the presence of PCBs and RCRA metals in surface soils. MI sampling was conducted to evaluate the nature and extent of contamination throughout the 80-acre site. The 20 MI sampling DUs for this investigation area, each about four acres in size, are presented on Figure 3-5.

4. Berms and Mounds

Assessment of the presence of PCBs and RCRA metals in soil berms and mounds. MI sampling was conducted to evaluate the nature and extent of contamination within berms and mounds throughout the project site. Locations of berms and mounds within the project site are presented on Figure 3-6.

5. Groundwater

Assessment of the presence of PCBs, RCRA metals, and petroleum-related contamination (including benzene, toluene, ethylbenzene, and xylene [BTEX], MTBE, polynuclear aromatic hydrocarbons [PAHs], and HVOCs) in groundwater near the Transmitter Buildings Area. Groundwater monitoring wells (MWs) were installed and groundwater sampling was conducted to evaluate the nature and extent of contamination at the site. Groundwater MW locations are presented on Figure 3-4.

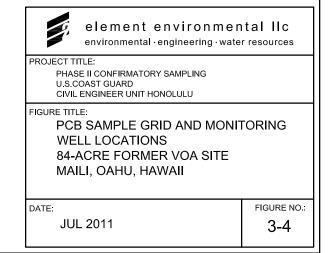
SCALE: 1"=100'

WWW.Carrollcox.com 808-782-6627

	PROJECT BOUNDARY OF FORMER VOA SITE	
]	BOUNDARY OF FORMER TRANSMITTER BUILDINGS ARE/	4

MONITORING WELL LOCATION

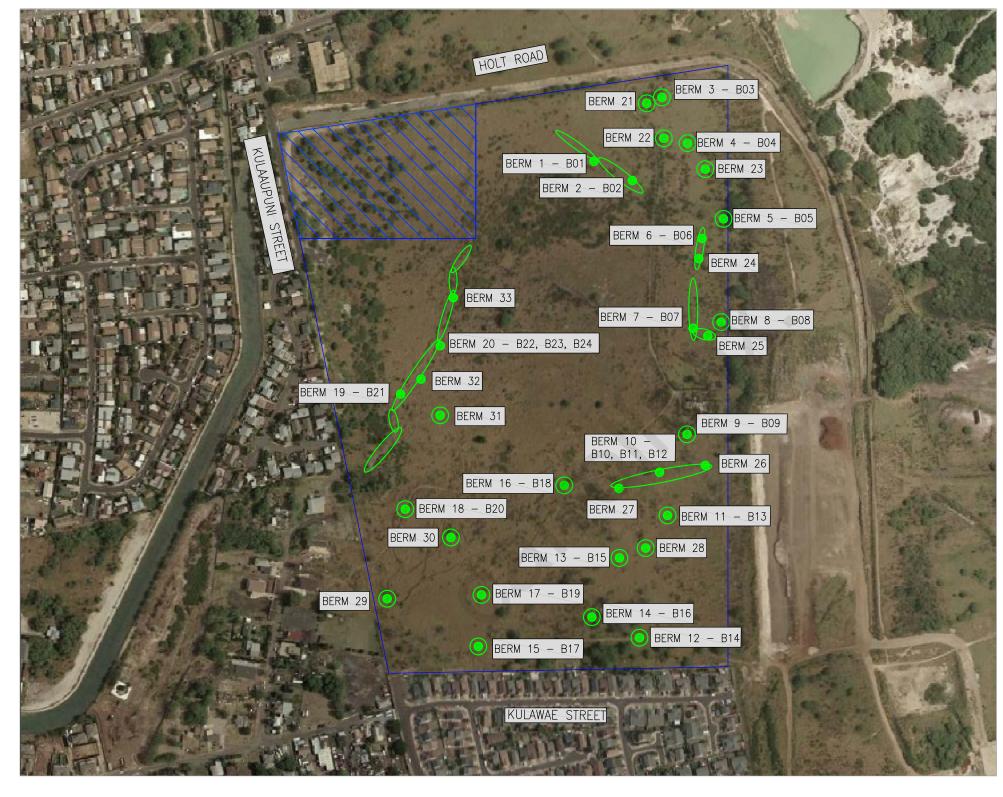
MONITORING WELL IDENTIFICATION


21.413303° N MONITORING WELL LOCATION 158.169445° W LATITUDE/LONGITUDE PREVIOUS PCB SAMPLE LOCATION (MACTEC 2007)

INITIAL 40'X40' PCB CONTAMINATION DELINEATION SAMPLING GRID

DELINEATION SAMPLING GRID

EXTENT OF PCB CONTAMINATION DELINEATION SAMPLING GRID


CONCRETE FOUNDATION OF FORMER TRANSMITTER BUILDING

SCALE: 1"=400'

	A Lagrantin			
	DU TA-1		17H 50'	
DU TA-2		TA-5	TRUE NORTH SCALE: 1"=150'	
	DU TA-4			
50'	0 150'	300'		
CALE: 1"=	150'			
EGEND				
	IECT BOUNDARY OF IER VOA SITE			
INITIAL 4-ACRE AREA OF THE FORMER TRANSMITTER BUILDINGS AREA DECISION UNIT				
1 FOLLOW-UP DECISION UNITS INSIDE OF THE FORMER TRANSMITTER BUILDINGS AREA				
DECISION UNITS OUTSIDE OF THE FORMER TRANSMITTER BUILDINGS AREA				
PCB SAMPLING GRID AREA EXCLUDED FROM THE DECISION UNIT				
DECI	CRETE SLAB EXCLUDED SION UNIT CRE AREA PREVIOUSLY S STATE OF HAWAII LEASE	SAMPLED		
	element er environmental en	nvironmer		
PROJECT TITLE: PHASE II CONFIRMATORY SAMPLING U.S.COAST GUARD CIVIL ENGINEER UNIT HONOLULU				
	FIGURE TITLE: DECISION UNITS 84-ACRE FORMER MAILI, OAHU, HAW			
DGRAPH WAII	date: JUL 2011		FIGURE NO.: 3-5	

400' 0 400' 800'

SCALE: 1"=400'

- source: 2008 AERIAL PHOTOGRAPH

		TRUE NORTH	904FF +00
	LEGEND		
		PROJECT BOUNDARY OF FOR VOA SITE	RMER
\subset	>	APPROXIMATE LOCATION OF BERMS	LARGE
С)	APPROXIMATE LOCATION OF BERMS THAT WERE TRENCHE	
BERM 🤇	3 – BO3	TRENCHED BERM NUMBER A BERM SAMPLE NUMBER	ND
BERM 2	24	TRENCHED BERM NUMBER (SAMPLED)	BERM NOT
		5-ACRE AREA PREVIOUSLY S FOR STATE OF HAWAII LEASE	
	Ŷ,	element environmen environmental · engineering · wate	
	U.S.	TITLE: SE II CONFIRMATORY SAMPLING COAST GUARD L ENGINEER UNIT HONOLULU	
	84	TLE: RM LOCATIONS -ACRE FORMER VOA SITE NILI, OAHU, HAWAII	
РН '	DATE: JL	JL 2011	FIGURE NO.: 3-6

Section 4 Site Characterization Field Tasks

E2 collected and analyzed soil and groundwater samples from the five investigation areas described in Section 3 in order to evaluate the nature and extent of potential contamination at the project site. Project COPCs include: PCBs, RCRA metals, TPH-G, TPH-D, TPH-O, asbestos, and petroleum-related contamination (including BTEX, MTBE, PAHs, and HVOCs).

4.1 Characterization Activities

The following tasks were completed during this site characterization:

- Sample location layout and site preparation;
- Soil sample collection and analysis; and
- Site restoration.

Select photographs taken during the field activities are included in Appendix A and a copy of the field notes is included in Appendix B.

4.1.1 Utility Clearance and Underground Toning

E2 contracted Hawaii Geophysical Services, LLC to tone the berms and mounds prior to trenching and sampling to ensure that any anomalies were included in the sampling. An electromagnetic toner was utilized to detect metallic debris within the berms and mounds.

4.1.2 Sample Location Layout and Site Preparation

The sample locations for the investigation were based on locations developed in the Project WP (E2, 2009c). PCB sampling grids 1 and 2 were established based on the previous PCB sample locations from 2008, GSAMPCB1 AND GSAMPCB2, as shown on Figure 3-4. A survey crew from R.M. Towill Corporation surveyed and staked these two previous sampling locations on July 28, 2009.

DU boundaries were located in the field using a hand-held global positioning system (GPS) device. The boundaries of the 20 DUs outside of the Transmitter Buildings Area and the original DU within the Transmitter Buildings Area, each roughly four acres in size, are shown on Figure 3-5. The boundaries of the five DUs within the Transmitter Buildings Area are also shown on Figure 3-5. The boundaries of the seven DUs within the concrete foundation are shown on Figure 5-8.

Groundwater MWs were located around the Transmitter Buildings Area in order to evaluate the nature and extent of contamination at the project site. Previous groundwater sampling from 2008 indicated contamination within the Transmitter Buildings Area. Groundwater MW locations are presented on Figure 3-4.

4.1.3 Sample Collection and Analysis

Prior to the start of each work day, a safety and health meeting was conducted by the Site Safety and Health Officer (SSHO) as required by the Project Site Safety and Health Plan (SSHP). The E2 Site Foreman also conducted a meeting describing the work that was to be performed.

Project personnel were responsible for collecting samples and decontaminating the sampling equipment. To avoid cross-contamination of the samples and to protect worker safety and health, the person performing the sample collection donned a new pair of disposable nitrile gloves while collecting each sample.

Field notes were maintained by E2 personnel recording the location, sample media, number, date and time for each sample collected, as well as any relevant observations. The field notes were recorded in a bound notebook using an indelible marker. A copy of the field notes is included in Appendix B. Digital color photographs were taken to document the field investigation, and select photographs are included in Appendix A.

The discrete soil samples from the previously identified PCB-contaminated areas were initially collected on July 28 through July 30, 2009. The PCB grids were expanded and additional samples were collected on August 5, August 18, September 17, and December 29, 2009, as well as May 27 and September 1, 2010.

The MI soil samples from the 4-acre area DU within the Transmitter Buildings Area were initially collected on July 31, 2009. This DU was further divided into five smaller DUs and re-sampled on December 29, 2009. The concrete foundation was divided into seven decision units and samples were collected on May 20 and September 1, 2010. The soil samples from directly beneath the concrete foundation were collected on May 19, 2010.

The MI soil samples from the 80-acre area outside of the Transmitter Buildings Area were collected on July 30 and 31, 2009.

The MI soil samples from the berms and mounds were collected on August 25 and 26, 2009.

The groundwater samples were collected on August 13, 2009.

4.1.3.1 Collection of Discrete Soil Samples from the Previously Identified PCB-Contaminated Areas

Discrete surface soil samples were collected from the two previously identified PCBcontaminated areas utilizing a hand trowel to remove the top 2-3 inches of soil and a Terra-core plunger to retrieve each sample.

Subsurface samples were collected at approximately 2 feet and 4 feet bgs at alternate sampling nodes of the sampling grid. Sample borings were advanced utilizing a post-hole digger to approximately 2 feet bgs and a slide hammer to approximately 4 feet bgs. Primary and duplicate samples were collected directly from the borehole using a Terra-core plunger while post-hole digging between 6 inches and 2 feet bgs. Then, a slide hammer equipped with a hollow sampler was driven into the hole to approximately 4 feet bgs. Primary and duplicate samples were collected from the acetate sleeve liner or directly from the hollow sampler at the drive depth. Soil samples were placed directly into resealable bags.

Each sample consisted of approximately 20 grams of soil. Sample locations were initially based off a simple 10' grid system that surrounded the two surveyed PCB hot spot locations. As immunoassay results were interpreted, the sampling grid was extended twice in an attempt to completely delineate the extent of the PCB contamination.

After the second grid expansion, the surface soil sample grids were expanded twice more with samples being collected utilizing a hand trowel to remove the top 2-3 inches of soil then collecting approximately 20 grams of soil placed directly into an 8 ounce glass jar.

4.1.3.2 Collection of Multi-increment Soil Samples from the 4-Acre Area within the Transmitter Buildings Area

The initial MI soil sample from the 4-acre DU within the Transmitter Buildings Area excluded the two 40-foot by 40-foot discrete sampling grid areas centered around the two locations known to have PCB contamination.

A MI surface soil sample was collected from the 4-acre DU within the Transmitter Buildings Area utilizing a hand trowel to remove the top 2-3 inches of soil and a Terra-core plunger to retrieve each increment. Each increment consisted of approximately 20 grams of soil; and each sample consisted of 30 increments. Increment samples were located in a stratified-random manner (e.g., even spacing along a serpentine path traversing the area).

Two replicate MI surface samples were collected from the same DU using the same stratifiedrandom manner, but from a different direction or starting point. Increment samples from the same MI sample were combined in the field and placed directly into resealable bags.

The analytical results of the MI and two replicate samples had high relative standard deviations (RSDs), which indicate a high degree of variation of contaminant concentrations in the soil. The high RSDs were likely due to the elevated concentrations of PCBs in the soils surrounding the two discrete sampling grids. As detailed in the previous section, the two discrete sampling grids were subsequently expanded after the initial sampling was completed. The expanded grid areas were included in the initial MI sampling DU for the 4-acre area (DU TC on Figure 3-4).

Follow-up MI soil sampling from the 4-acre area within the Transmitter Buildings Area consisted of MI sample collection from five smaller DUs (DU TA-1 through 5 on Figure 3-4) that excluded the expanded grid areas around the two locations known to have PCB contamination.

The five surface MI soil samples were collected from the 4-acre area utilizing a hand trowel to remove the top 2-3 inches of soil and a Terra-core plunger to retrieve each increment. Each increment consisted of approximately 20 grams of soil; and each sample consisted of 30 increments. Increment samples were located in a stratified-random manner (e.g., even spacing along a serpentine path traversing the area).

Two replicate MI surface samples were collected from one of the five DUs using the same stratified-random manner, but from a different direction or starting point. Increment samples from the same MI sample were combined in the field and placed directly into resealable bags.

In addition to the MI soil samples, concrete samples were collected from the large concrete slab within this investigation area. The concrete slab was divided into seven (7) DUs (Figure 5-8). A handheld rotor hammer was used to bore through the top inch of the concrete slab at least ten locations within each DU. Dust from the boring was collected and placed directly into specially cleaned glass sample containers.

Three soil samples were collected from directly beneath the concrete foundation. A concrete core was advanced through the entire thickness of the concrete slab at three different locations around the slab. The full thickness was found to be between 5" and 7". Soil was collected from

beneath the concrete slab at these sample locations and collected in specially cleaned glass sample containers. These soil samples were analyzed for organochlorine pesticides.

4.1.3.3 Collection of Multi-increment Soil Samples from the 80-Acre Area outside of the Transmitter Buildings Area

Twenty (20) surface MI soil samples were collected from the 80-acre area outside of the Transmitter Buildings Area utilizing a hand trowel to remove the top 2-3 inches of soil and a Terra-core plunger to retrieve each increment. Each increment consisted of approximately 20 grams of soli; and each sample consisted of 30 increments. Increment samples were located in a stratified-random manner (e.g., even spacing along a serpentine path traversing the area).

Two replicate MI surface samples were collected from two of the DUs using the same stratifiedrandom manner, but from a different direction or starting point. Increment samples from the same MI sample were combined in the field and placed directly into resealable bags.

4.1.3.4 Collection of Multi-increment Soil Samples from the Berms and Mounds

An excavator was utilized to trench portions of selected berms to visually identify buried construction debris or other solid waste. After trenching was complete, MI soil samples were collected using Terra-core soil plungers that were driven directly into the soil. Each increment was comprised of approximately 20 grams of soil; and each sample consisted of 30 increments. Increment samples from the same MI sample were combined in the field and placed directly into resealable bags.

4.1.3.5 Collection of Groundwater Samples

Six MWs were installed at the site on August 10 and 11, 2009. The well casings were constructed of flush-threaded two-inch diameter schedule 40 polyvinyl chloride (PVC) pipe. The wells were set at a depth of 20 feet bgs with a screened interval of 10 feet. Filter pack of medium-grained sand was packed from the bottom of the well up to a depth of two feet above the top of the screened section. A bentonite pellet seal was placed above the filter pack to within 1.0 to 0.5 feet of the ground surface. Wells were finished flush to the ground with a traffic-rated cover. Select photographs of completed MWs are provided in Appendix A. Copies of boring and well construction logs are provided in Appendix B.

Development of the groundwater MWs was performed on August 12, 2009. A surge block was manually plunged up and down the interior of each MW for a minimum of 15 minutes. The fine-grained material that entered the well during construction and surging activities was then removed by purging a volume of 55 gallons from each well.

Groundwater samples were collected on August 17, 2009. Prior to sampling, the MW was purged by removing a minimum of three times the standing volume of static water present in the well.

The recovered water samples were placed in the appropriate sample jars provided by the analytical laboratory. The water samples collected for metals analysis were filtered in the field with a 0.45 micron filter prior to placement into the laboratory-supplied container. These jars were then properly labeled and placed on ice to ensure that the temperature of the collected samples remained below 4 degrees Celsius (°C) prior to arrival at the analytical laboratory.

4.1.3.6 Collection of PCB Congener Samples

On September 1, 2010, five soil samples were collected from the PCB-contaminated area within the Transmitters Building Area. The purpose of the analysis was to evaluate the relative composition of the 209 PCB congeners. Due to the relatively high concentration of PCBs in previous samples, all five samples were screened by analyzing by EPA Method 8082 prior to the EPA Method 1668 analysis.

4.1.3.7 Sample Identification and Handling

All soil samples were labeled with the sample identification information described below and placed into insulated coolers filled with ice for preservation. The samples were chilled and maintained at a temperature of $4^{\circ}C \pm 2^{\circ}C$ and managed under chain of custody (COC) protocol and documentation until delivery to the analytical laboratory.

MI soil samples were hand delivered to TestAmerica Laboratories, Inc. - Honolulu where MI sample preparation was conducted. The samples were then shipped to TestAmerica - Tacoma for analysis of PCBs (EPA Method 8082), RCRA Metals (EPA Methods 6010B and 7471), TPH-G, TPH-D, and TPH-O (EPA Method 8015B), depending on the analytical methods listed in the table below. Asbestos (EPA Method 600/R-93/116) samples were analyzed by AmeriSci - Los Angeles.

Analysis of soil samples from the original grids and two grid expansions from the two previously identified PCB-contaminated areas were analyzed by E2 with RaPID Assay Test Kits and laboratory confirmation samples were analyzed by TestAmerica – Tacoma. Soil samples from the latest grid expansions were analyzed by TestAmerica Honolulu and TestAmerica – Tacoma, respectively. TestAmerica – West Sacramento was also utilized to analyze samples for PCB congeners by EPA Method 1668.

Analysis of discrete soil samples analyzed for Organochlorine Pesticides (EPA Method 8081A) was performed by TestAmerica –Tacoma.

Groundwater samples were shipped to TestAmerica - Tacoma for analysis of PCBs (EPA Method 8082), RCRA Metals (EPA Methods 6010B and 7471), TPH-G, TPH-D, and TPH-O (EPA Method 8015B), MTBE (EPA Method 8260B), BTEX (EPA Method 8260B), PAHs (EPA Method 8270 SIM), and HVOCs (EPA Method 8260B).

Table 4-1 below summarizes the soil and groundwater sample analyses by investigation area.

Feature/Facility	Sample Description	Laboratory Analyses
Two previously identified locations of PCB contamination	A sampling grid (approximately 200- foot by 250-foot at its longest width and length, respectively) with sample nodes at every ten feet surrounding the two previously identified locations of PCB contamination. Discrete surface soil samples were collected at 242 sample nodes. Discrete subsurface soil samples were collected at 2 and 4 feet bgs at alternating nodes.	 Surface and Subsurface Soil Samples: PCBs, RaPID Assay Test Kits PCBs, EPA Method 8082 PCBs, EPA Method 1668 Concrete Slab Samples: PCBs, EPA Method 8082
4-acre Transmitter Buildings Area	The entire area was initially one DU. One (1) primary and two (2) replicate MI surface soil samples were collected from the entire DU. Each MI soil sample was collected from 30 increment sample locations.	 Surface Soil Samples: PCBs, EPA Method 8082 RCRA Metals, EPA Methods 6010B and 7471 TPH-G, TPH-D, and TPH-O, EPA Method 8015B Asbestos, EPA Method 600/R-93/116
4-acre Transmitter Buildings Area	Follow-up sampling consisting of five DUs. One (1) primary surface soil sample was collected from each DU. Two (2) replicate MI surface soil samples were collected from one (1) DU. Each MI soil sample was collected from 30 increment sample locations.	 Surface Soil Samples: PCBs, EPA Method 8082 Lead, EPA Method 6010B
4-acre area Transmitter Buildings Area	The concrete slab was divided into 7 DUs.	Concrete Foundation Samples:PCBs, EPA Method 8082
4-acre area Transmitter Buildings Area	Three discrete soil samples were collected from beneath the concrete slab.	 Beneath Concrete Foundation Soil Samples: Organochlorine Pesticides, EPA Method 8081A
80-acre area outside of the Transmitter Buildings Area	One (1) primary MI surface soil sample was collected from each of the 20 DUs. Two (2) replicate MI surface soil samples were collected from two (2) of the DUs. Each MI soil sample was collected from 30 increment sample locations.	 Surface Soil Samples: PCBs, EPA Method 8082 RCRA Metals, EPA Methods 6010B and 7471

Feature/Facility	Sample Description	Laboratory Analyses				
Berms and mounds	Twenty (20) separate DUs consisting of one berm each were sampled. One (1) primary MI soil sample was collected from each berm. Two (2) replicate MI soil samples were collected from two (2) of the berms. Each MI soil sample was collected from 30 increment sample locations.	 Berm Soil Samples: PCBs, EPA Method 8082 RCRA Metals, EPA Methods 6010B and 7471 				
Groundwater	Six groundwater MWs were installed at the project site. MWs were installed surrounding the Transmitter Buildings Area. Based on topographic maps, depth to groundwater was estimated to be 8 to 10 feet bgs. Therefore, well depths were set at 20 feet bgs.	 Groundwater Samples: PCBs, EPA Method 8082 RCRA Metals, EPA Methods 6010B and 7471 TPH-G, TPH-D, and TPH-O, EPA Method 8015B MTBE, EPA Method 8260B BTEX, EPA Method 8260B PAHs, EPA Method 8270 SIM HVOCs, EPA Method 8260B 				

Section 5 Sample Analysis and Characterization Results

Project soil and groundwater samples were analyzed by TestAmerica - Honolulu, TestAmerica - Tacoma, and AmeriSci - Los Angeles, which are all commercial analytical laboratories. Analytical methods used by the laboratories are from EPA publication SW-846 "*Test Methods*" *(EPA, 1996).*

The following subsections summarize the results generated from this investigation. Summary analytical data tables for soil and groundwater samples are included in Appendix C. Complete laboratory data packages are included in Appendix D.

5.1 Data Evaluation Criteria

Statistical analysis of the MI soil samples were completed per the HDOH's *Technical Guidance Manual for the Implementation of the Hawaii State Contingency Plan* (HDOH, 2009). In accordance with the guidance document, an estimation of the upper end of the variation from the mean (mean plus one standard deviation) has also been calculated. As the CSM indicated future residential use at the project site, the results are compared to HDOH EALs, Toxic Substances Control Act (TSCA) High Occupancy Areas as well as EPA Region 9 Regional Screening Levels (RSLs) for Residential Soils updated in November 2010 Specific EALs to be used for soil are the *Unrestricted Land Use* values listed in the HDOH Guidance document *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table I-1 for Soil*, updated in March 2009. Specific EALs to be used for groundwater are the *Groundwater Action Levels* values listed in *Table D-1d*.

5.2 Soil Sample Analysis Results

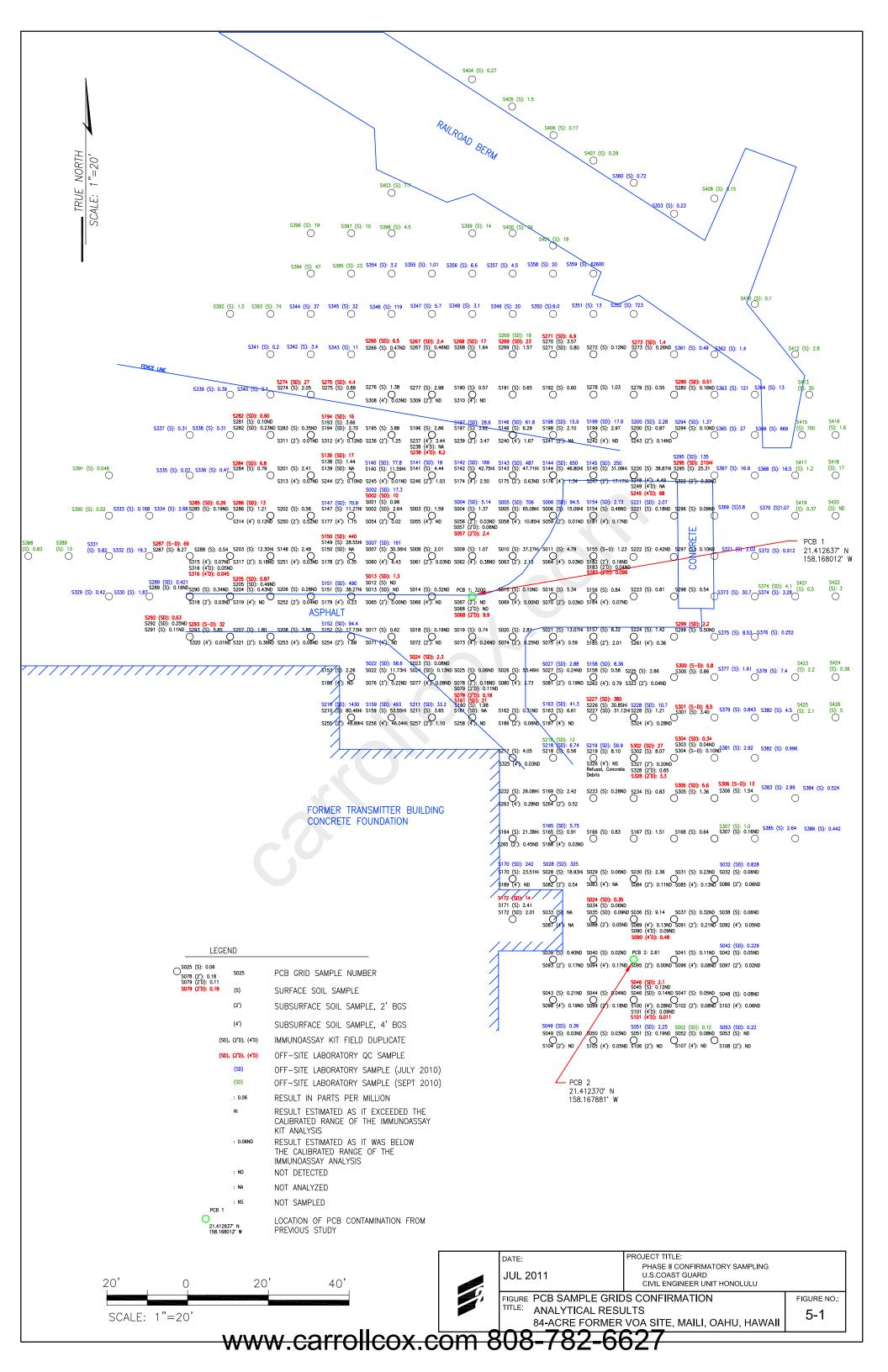
5.2.1 Previously Identified PCB-Contaminated Areas

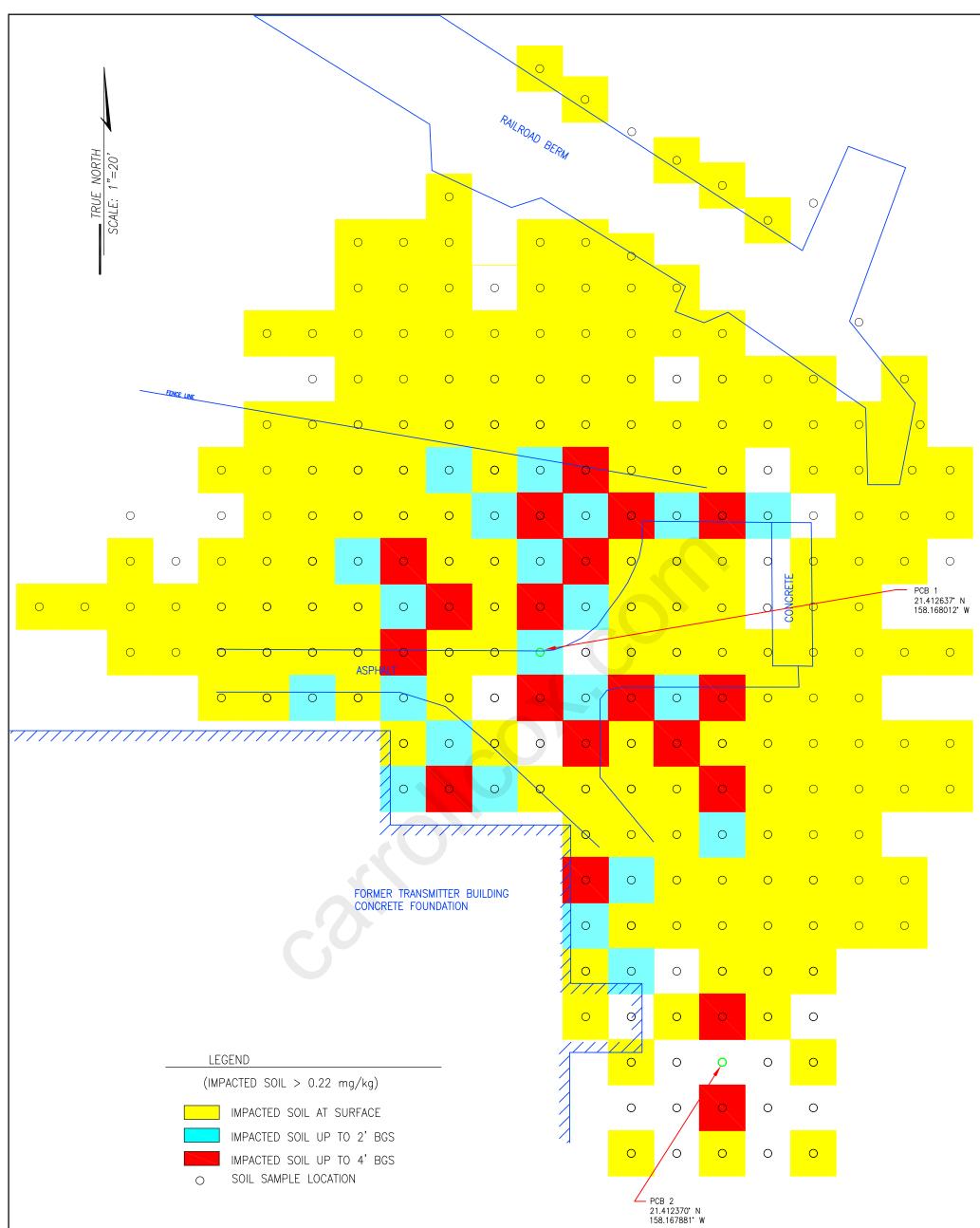
Three hundred eighty-three (383) primary samples and 46 duplicates were collected from 242 sampling nodes within an approximately 200-foot by 250-foot area surrounding the two previously identified PCB-contaminated areas. In addition to the field duplicates, 42 replicate samples were collected and sent to the analytical laboratory. Samples were collected from the subsurface soil as described in Section 4.1.3.1. Sample points were laid out in a square grid with sample nodes at ten-foot offsets. Discrete surface soil samples were collected at the 242 sample nodes. Discrete subsurface soil samples were collected at 2 and 4 feet bgs at alternating nodes.

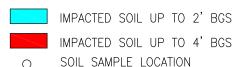
Primary and duplicate samples were analyzed for PCBs with RaPID Assay Test Kits. A subset of replicate samples was submitted to the laboratory for analysis of PCBs (EPA Method 8082).

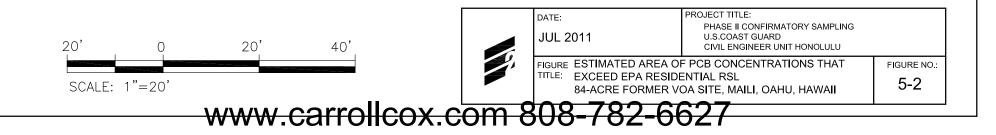
Analytical results of the soil samples indicated the following:

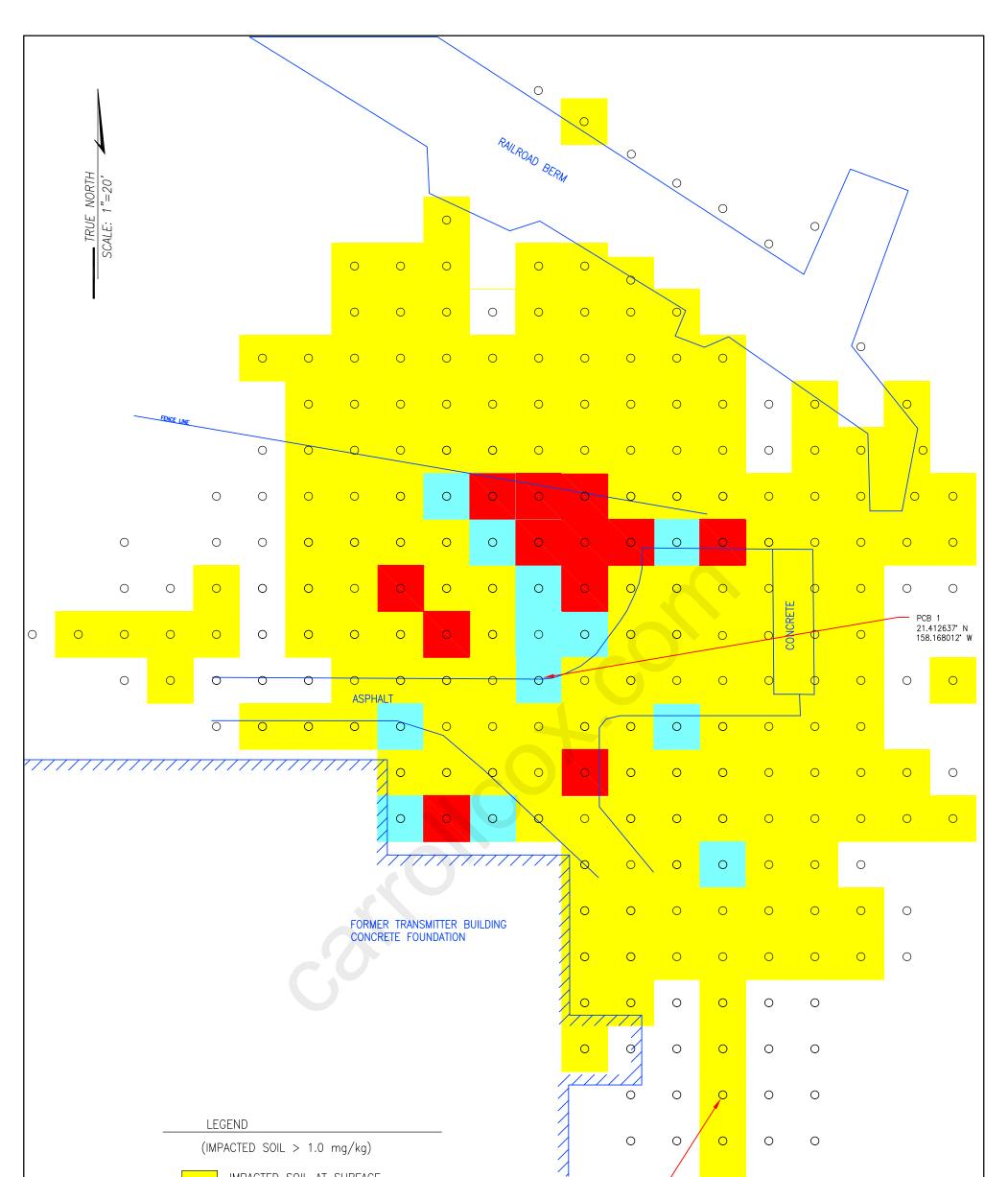
- Of the 242 primary surface samples collected, 218 samples exceeded the EPA Residential RSL of 0.22 mg/kg.
- Of the 52 primary samples collected from 2 feet bgs, 23 samples exceeded the EPA Residential RSL of 0.22 mg/kg.

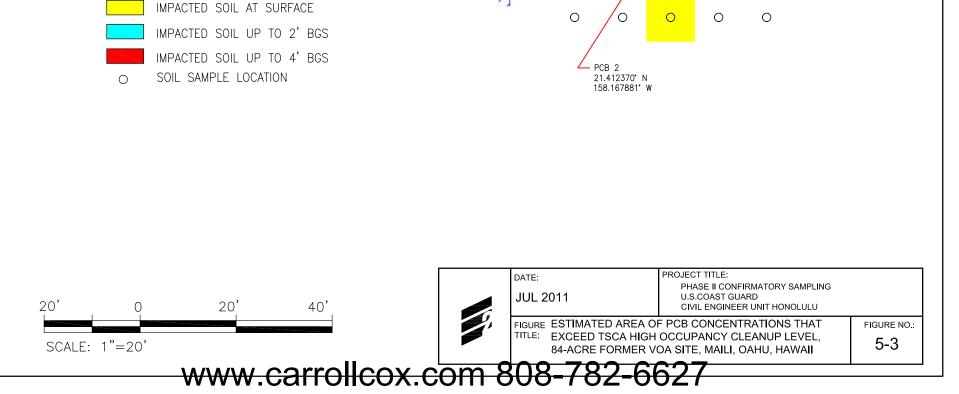

• Of the 54 primary samples collected from 4 feet bgs, 17 samples exceeded the EPA Residential RSL of 0.22 mg/kg.

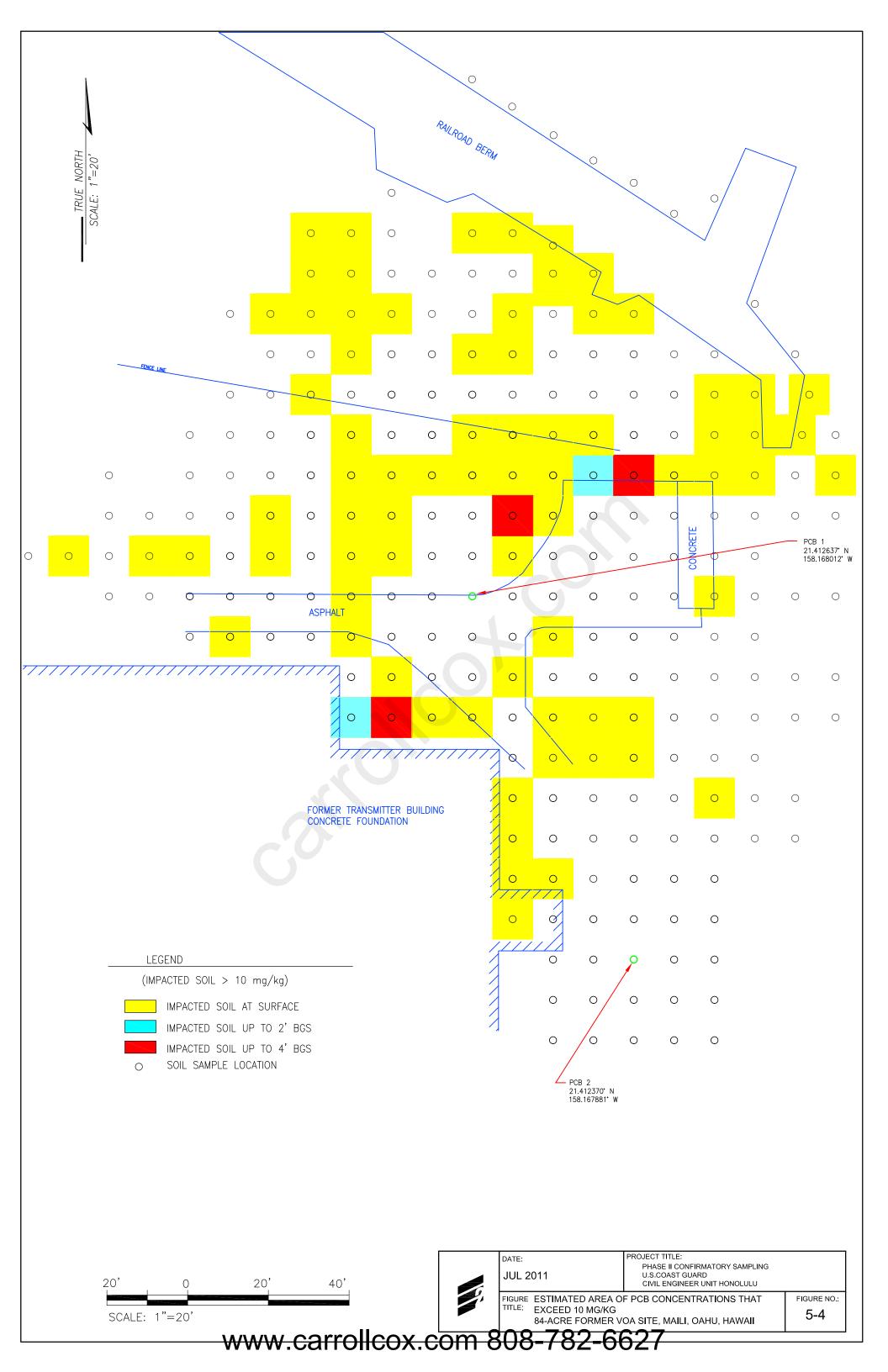

Complete analytical results are shown on Figure 5-1. Figures 5-2 through 5-5 depict estimated volumes of soil that contain PCBs above various thresholds. These results are summarized below in Table 5-1. The thresholds included in Table 5-1 and Figures 5-2 through 5-5 are based on the EPA Residential RSL of 0.22 mg/kg, the TSCA High Occupancy Area cleanup level of 1.0 parts per million (ppm) (equivalent to 1.0 mg/kg), the TSCA High Occupancy Area cleanup level of 10 ppm with a cap, and TSCA Low Occupancy cleanup level with markings and a fence. The 50 ppm concentration also represents the threshold at which soil may be disposed at State approved landfill.

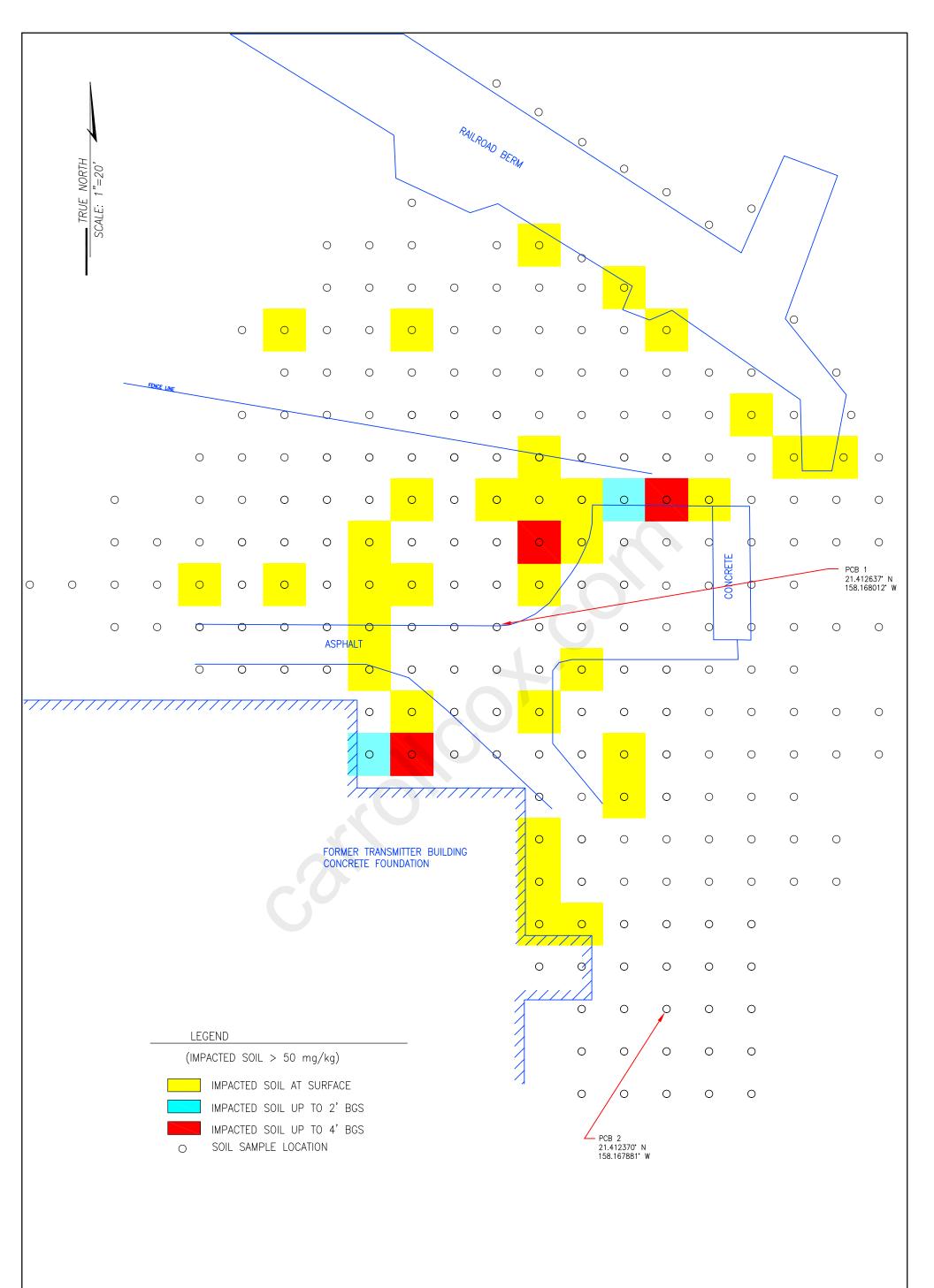

Threshold (mg/kg)	Volume up to 1' bgs (cubic yards)	Volume up to 3' bgs (cubic yards)	Volume up to 4' bgs (cubic yards)	Total Volume (cubic yards)
0.22 (EPA Residential RSL)	807	256	252	1,315
1.0 (TSCA High Occupancy Area)	615	133	119	867
10	278	22	44	344
50	137	22	44	204

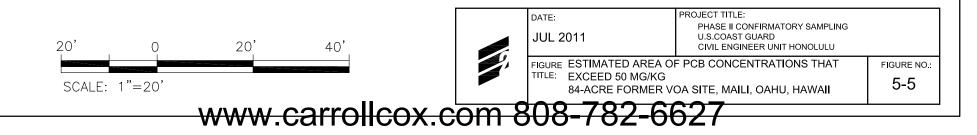

Table 5-1: Estimated Total Volume of Contaminated Soil


A complete summary of the soil sample analytical results is presented in Appendix C. The complete analytical laboratory reports are presented in Appendix D.









5.2.2 4-Acre Area within the Transmitter Buildings Area

An initial primary soil sample and two replicates were collected from 30 increment sample locations within the 4-acre Transmitter Buildings Area. Samples were collected from the surface soil as described in Section 4.1.3.2. The soil samples were analyzed for PCBs (EPA Method 8082), RCRA metals (EPA Methods 6010B and 7471), TPH-G, TPH-D, and TPH-O (EPA Method 8015B), and asbestos (EPA Method 600/R-93/116).

Analytical results of the soil samples indicated the following:

- PCB Aroclor 1260 was detected in the primary sample and both replicate samples at levels ranging from 1.8 to 15 mg/kg. These concentrations are above the EPA Residential RSL of 0.22 mg/kg and the HDOH Unrestricted Land Use EAL of 1.1 mg/kg. All other PCB Aroclor results were ND.
- Arsenic was detected in the primary sample and both replicate samples at levels ranging from 9.0 to 11 mg/kg. These values exceed the EPA Residential RSL of 0.39 mg/kg and the HDOH Unrestricted Land Use EAL of 0.43 mg/kg. The concentrations do not exceed the HDOH assumed background level for arsenic of 20 mg/kg.
- Lead was detected in the primary sample and both replicate samples at levels ranging from 54 to 1,900 mg/kg. The replicate sample with the result of 1,900 mg/kg is in exceedance of the EPA Residential RSL and the HDOH Unrestricted Land Use EAL, both of which are 400 mg/kg.
- Silver was not detected in any MI samples from this DU. All other RCRA metals (Barium, Cadmium, Chromium, Selenium, and Mercury) were detected in the primary sample and one or both replicate samples, but at levels below the respective EPA Residential RSLs and the HDOH Unrestricted Land Use EALs.
- TPH was detected in the primary sample and both replicate samples, but at levels below the EPA Residential RSLs and the HDOH Unrestricted Land Use EALs.
- Asbestos was not detected in the primary sample or either replicate samples.

Analytical results are summarized in Table 5-2 below. The results are depicted on Figure 5-6. A complete summary of the sample analytical results is presented in Appendix C. The complete analytical laboratory reports are presented in Appendix D.

Table 5-2: Initial Four-Acre Transmitter Buildings Area DU Soil S	ample Results Summary
Table 3-2. Initial Four-Acre Transmitter Dunuings Area DO 001 0	ample Results Summary

Analyte	Average Conc. (mg/kg)	Standard Deviation (mg/kg)	Average + Standard Deviation (mg/kg)	95% UCL (mg/kg)	EPA RSL (mg/kg)	HDOH EAL (mg/kg)					
Polychlorinated Biphenyls (EPA 8082)											
PCB - 1016	ND	NA	NA	NA	3.9	1.1					
PCB - 1221	ND	NA	NA	NA	0.14	1.1					
PCB - 1232	ND	NA	NA	NA	0.14	1.1					
PCB - 1242	ND	NA	NA	NA	0.22	1.1					
PCB - 1248	ND	NA	NA	NA	0.22	1.1					
PCB - 1254	ND	NA	NA	NA	0.22	1.1					
PCB - 1260 7.4		7	14	15.1	0.22	1.1					
RCRA Metals (EPA 6010B/7471A)											

Analyte	Average Conc. (mg/kg)	Standard Deviation (mg/kg)	Average + Standard Deviation (mg/kg)	95% UCL (mg/kg)	EPA RSL (mg/kg)	HDOH EAL (mg/kg)	
Arsenic	10	1	11	11.1	0.39	0.43	
Lead	688	1,050	1,738	1,876.2	400	400	
Barium	141	48	189	195.7	15,000	3,100	
Cadmium	0.8	0	1	1.2	70	14	
Chromium	113	6	119	119.9	280	500	
Selenium	1.1	0	1	1.4	390	78	
Silver	ND	NA	NA	NA	390	78	
Mercury	0.0	0	0	0.0073	5.6	4.7	
Total Petroleum Hydrocarb	ons (EPA 801	15B)					
GRO	2.2	0	3	2.6	NS	600	
DRO	10	7	17	17.8	NS	500	
RRO	52	35	87	92.1	NS	2,300	
Asbestos (EPA 600/R-93/1	16)						
Asbestos	ND	NA	NA	NA	NS	NS	

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL. NA = Not applicable; average, standard deviation, and 95% UCL not calculated for analytes with all non-detects.

ND = Non-detect.

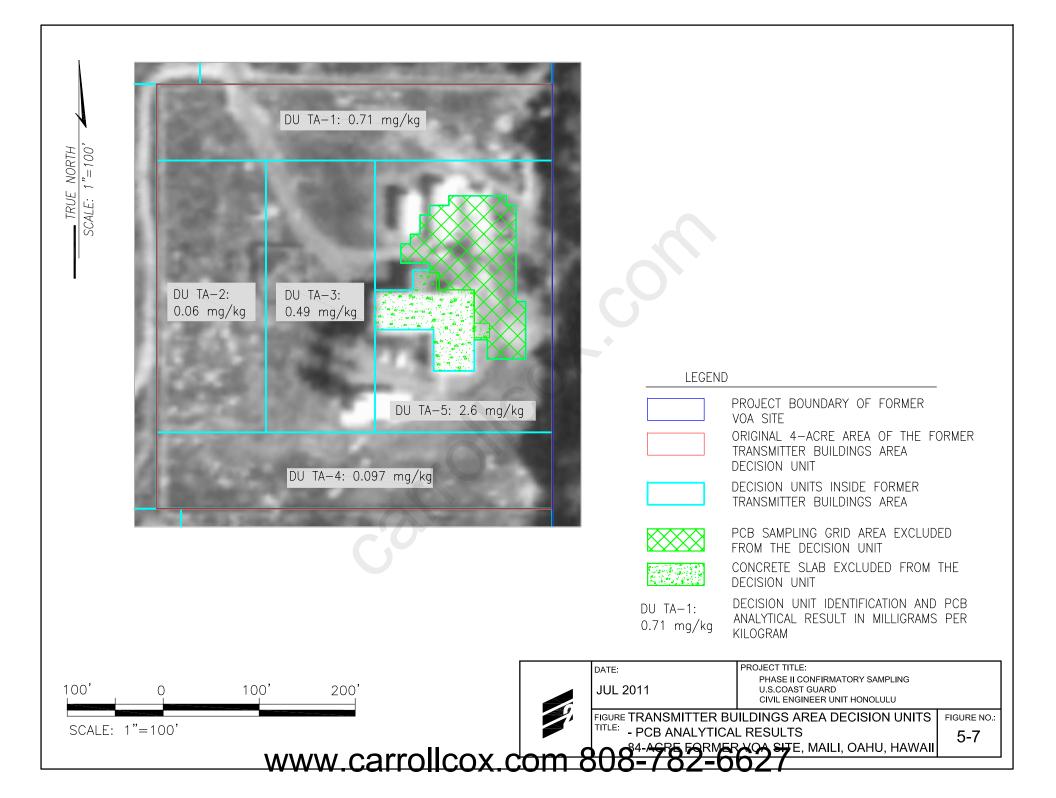
NS = No Standard published. Notes: (1) All EALs are fo

(1) All EALs are for Unrestricted Land Use unless otherwise indicated.

(2) In cases where at least one analyte was detected, the average, standard deviation, and 95% UCL were calculated using the method detection limit for analytes with non-detects.

After the discrete PCB sampling grid was expanded for the third time, the 4-acre area was divided into five DUs that excluded the expanded PCB sampling grid. Five primary soil samples and two replicates were collected from the five DUs. Each MI sample was collected from 30 increment sample locations within each DU. The soil samples were analyzed for PCBs (EPA Method 8082) and lead (EPA Method 6010B).

Analytical results of the soil samples indicated the following:


- PCB Aroclor 1260 was detected in all five DUs at concentrations ranging from 0.060 to 2.6 mg/kg. Two samples were well below the EPA Residential RSL of 0.22 mg/kg and all but one were below the HDOH Unrestricted Land Use EAL of 1.1 mg/kg.
- Lead was detected in all five samples at concentrations between 15 and 130 mg/kg. All five samples were well below the EPA Residential RSL and the HDOH Unrestricted Land Use EAL, both of which are 400 mg/kg.

Analytical results are summarized in Table 5-3 below. The results are depicted in Figure 5-7. A complete summary of the soil sample analytical results is presented in Appendix C. The complete analytical laboratory reports are presented in Appendix D.

SCALE: 1"=400'

LEGEND											
	PROJECT BOUNDARY OF FORMER VOA SITE										
	ORIGINAL 4–ACRE TRANSMITTER BUILDINGS AREA DECISION UNIT										
	DECISION UNITS OUTSIDE OF THE FRANSMITTER BUILDINGS AREA										
	5–ACRE AREA PREVIOUSLY SAMPLED FOR STATE OF HAWAII LEASE										
U 1: .0025 mg/kg	DECISION UNIT IDENTIFICATION AND PCB ANALYTICAL RESULT IN MILLIGRAMS PER KILOGRAM										
ND	NOT DETECTED										
	PROJECT TITLE: PHASE II CONFIRMATORY SAMPLING U.S.COAST GUARD										
	CIVIL ENGINEER UNIT HONOLULU										
	FIGURE TITLE: 80-ACRE AREA DECISION UNITS - PCB ANALYTICAL RESULTS 84-ACRE FORMER VOA SITE MAILI, OAHU, HAWAII										
	date: JUL 2011	FIGURE NO.: 5-6									

Analyte	DU TA-1 T001 (Primary Sample) (mg/kg)	DU TA-1 T002 (Replicate Sample) (mg/kg)	DU TA-1 T003 (Replicate Sample) (mg/kg)	DU TA-2 T004 (Primary Sample) (mg/kg)	DU TA-3 T005 (Primary Sample) (mg/kg)	DU TA-4 T006 (Primary Sample) (mg/kg)	DU TA-5 T007 (Primary Sample) (mg/kg)	EPA RSL (mg/kg)	HDOH EAL (mg/kg)		
Polychlorinated Biphenyls (EPA 8082)											
PCB - 1016	ND	ND	ND	ND	ND	ND	ND	3.9	1.1		
PCB - 1221	ND	ND	ND	ND	ND	ND	ND	0.14	1.1		
PCB - 1232	ND	ND	ND	ND	ND	ND	ND	0.14	1.1		
PCB - 1242	ND	ND	ND	ND	ND	ND	ND	0.22	1.1		
PCB - 1248	ND	ND	ND	ND	ND	ND	ND	0.22	1.1		
PCB - 1254	ND	ND	ND	ND	ND	ND	ND	0.22	1.1		
PCB - 1260	0.50	0.71	0.64	0.060	0.49	0.097	2.6	0.22	1.1		
RCRA Metals	s (EPA 6010) B/7471A)		•	•						
Lead	15	130	97	41	59	16	71	400	400		

Table 5-3: Follow-up DUs within the Four-Acre Transmitter Buildings Area Soil Sample Results Summary

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL.

The former Transmitter Building concrete slab foundation within this investigation area was divided into seven (7) DUs. MI samples were collected from each and sent to the analytical laboratory for PCBs analysis (EPA Method 8082). Samples were collected from the concrete as described in Section 4.1.3.2.

Analytical results of the concrete slab samples indicated the following:

• Of the 7 primary concrete samples collected, 6 samples exceeded the EPA Residential RSL of 0.22 mg/kg.

Complete analytical results are shown on Figure 5-8. These results are summarized below in Table 5-4.

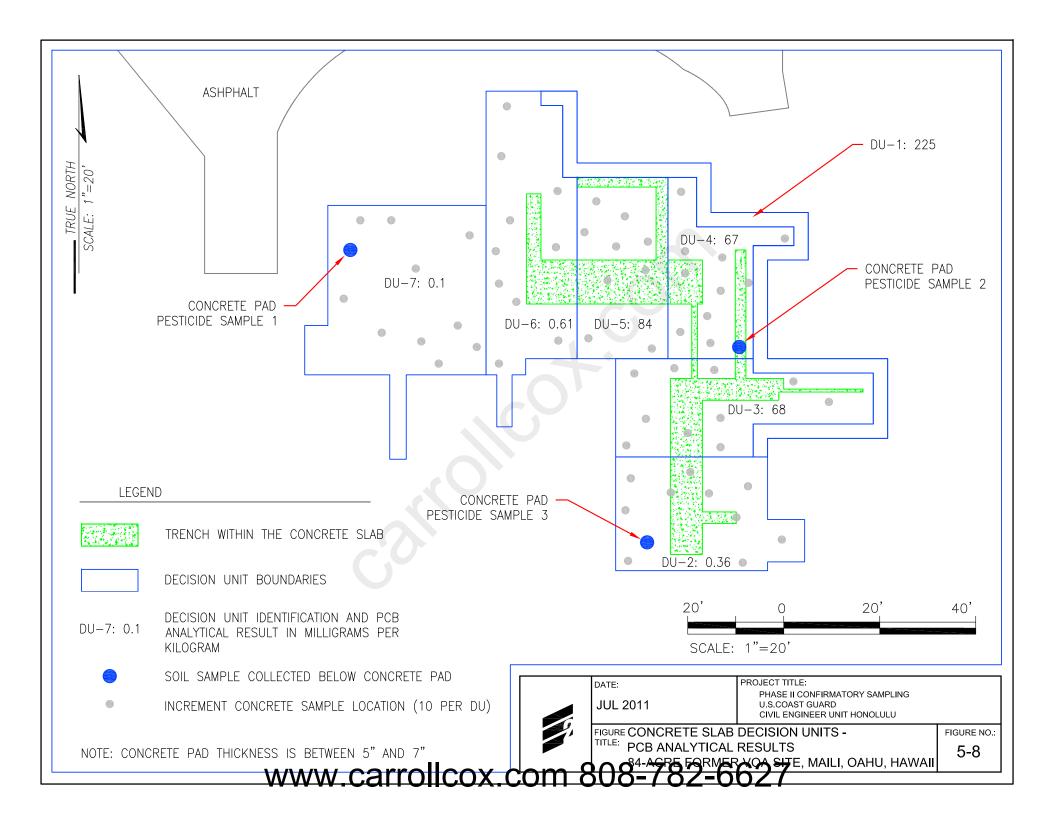
Analyte	Concrete DU 1 (Primary Sample) (mg/kg)	Concrete DU 2 (Primary Sample) (mg/kg)	Concrete DU 3 (Primary Sample) (mg/kg)	Concrete DU 4 (Primary Sample) (mg/kg)	Concrete DU 5 (Primary Sample) (mg/kg)	Concrete DU 6 (Primary Sample) (mg/kg)	Concrete DU 7 (Primary Sample) (mg/kg)	EPA RSL (mg/kg)	HDOH EAL (mg/kg)			
Polychlorinat	Polychlorinated Biphenyls (EPA 8082)											
PCB-1016	0.131	ND	ND	ND	ND	ND	ND	3.9	1.1			
PCB-1221	ND	0.14	1.1									
PCB-1232	ND	0.14	1.1									
PCB-1242	ND	0.22	1.1									
PCB-1248	ND	0.22	1.1									
PCB-1254	ND	0.22	1.1									
PCB-1260	225	0.36	68	67	84	0.61	0.1	0.22	1.1			
Area (sqft)	562	818	851	582	714	1052	1273	-	-			
Volume (cubic feet)	281	409	426	291	357	526	637	-	-			

Table 5-4: Concrete Slab Sample Results

Three discrete subsurface soil samples were collected from beneath the large concrete slab foundation within this investigation area. Samples were collected from the subsurface soil as described in Section 4.1.3.2.

Analytical results of the samples of the soil beneath the concrete slab indicated the following:

- 4,4'-DDD was detected in one of the three samples at a concentration of 0.0049 mg/kg. This is below the EPA Residential RSL and HDOH EAL of 2.0 mg/kg.
- 4,4'-DDE was detected in two of the three samples at concentrations of 0.015 mg/kg and 0.00013 mg/kg. These concentrations are below the EPA Residential RSL and HDOH EALS of 1.4 mg/kg.
- 4,4'-DDT was detected in two of the three samples at concentrations of 0.024 mg/kg and 0.00086 mg/kg. These concentrations are below the EPA Residential RSL and HDOH EAL of 1.7 mg/kg.
- Results for all other organochlorine pesticides were ND.


These results are summarized below in Table 5-5.

Analyte	Concrete Pad Pesticide Sample 1 (mg/kg)	Concrete Pad Pesticide Sample 2 (mg/kg)	Concrete Pad Pesticide Sample 3 (mg/kg)	EPA RSL (mg/kg)	HDOH EAL (mg/kg)
Organochlorine	e Pesticides (EPA 8081A)				
4,4'-DDD	ND	0.0049	ND	2.0	2.0
4,4'-DDE	ND	0.015	0.00013	1.4	1.4
4,4'-DDT	ND	0.024	0.00086	1.7	1.7

 Table 5-5:
 Beneath Concrete Slab Soil Sample Results

Only analytes with detected results are displayed

ND = Non-detect.

5.2.3 80-Acre Area outside of the Transmitter Buildings Area

Twenty (20) primary soil samples and four replicates were collected from 20 DUs in the 80-acre area outside of the Transmitter Buildings Area. Each MI sample was collected from 30 increment sample locations within each DU. Samples were collected from the surface soil as described in Section 4.1.3.3. The soil samples were analyzed for PCBs (EPA Method 8082) and RCRA metals (EPA Methods 6010B and 7471).

Analytical results of the soil samples indicated the following:

- PCB Aroclor 1260 was detected above the laboratory reporting limits in eight DUs at concentrations ranging from 0.0031 to 0.015 mg/kg. These detected concentrations are all well below the EPA Residential RSL of 0.22 mg/kg and the HDOH Unrestricted Land Use EAL of 1.1 mg/kg. All other PCB Aroclor results were ND.
- Arsenic was detected in all 20 samples at concentrations between 2.0 and 17 mg/kg. All 20 samples exceeded the EPA Residential RSL of 1.6 mg/kg and the HDOH Unrestricted Land Use EAL of 1.9 mg/kg. The concentrations do not exceed the HDOH assumed background level for arsenic of 20 mg/kg.
- All other RCRA metals results were well below their respective EPA Residential RSLs and the HDOH Unrestricted Land Use EALs.

Analytical results are summarized below in Table 5-6. The results are depicted in Figure 5-6. A complete summary of the soil sample analytical results is presented in Appendix C. The complete analytical laboratory reports are presented in Appendix D.

			Acre Area				20.0	90 / 11 Ou				Jan J		
	DU 1 - S111 (Primary Sample)	DU 1 - S112 (Replicate Sample)	DU 1 - S113 (Replicate Sample)	DU 2 - S114 (Primary Sample)	DU 3 - S115 (Primary Sample)	DU 4 - S116 (Primary Sample)	DU 5 - S117 (Primary Sample)	DU 6 - S118 (Primary Sample)	DU 7 - S119 (Primary Sample)	DU 8 - S120 (Primary Sample)	DU 9 - S121 (Primary Sample)	DU 10 - S122 (Primary Sample)	EPA RSL	HDOH EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 808	2)											
PCB - 1016	NĎ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9	1.1
PCB - 1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17	1.1
PCB - 1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17	1.1
PCB - 1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.22	1.1
PCB - 1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.22	1.1
PCB - 1254	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.22	1.1
PCB - 1260	0.0024	0.0025	0.0024	0.0037	0.0030	0.0024	ND	0.0017	ND	0.0031	0.015	ND	0.22	1.1
RCRA Metal	s (EPA 6010)B/7471A)												
Arsenic	3.8	4.4	2.6	5.4	3.9	7.8	2.0	2.3	9.1	14	17	4.9	0.39	0.43
Lead	7.7	58	9.3	12	17	11	5.1	10	17	11	11	11	400	400
Barium	80	80	84	120	66	81	51	66	71	57	55	70	15,000	3,100
Cadmium	ND	ND	ND	0.25	ND	0.25	ND	ND	0.36	0.30	0.26	ND	70	14
Chromium	140	140	130	150	120	160	62	98	110	100	110	110	280	500
Selenium	ND	ND	ND	ND	ND	ND	0.31	ND	1.8	2.8	0.94	0.41	390	78
Silver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	390	78
Mercury	ND	ND	0.0080	ND	4.3	4.7								
	DU 11 -	DU 12 -	DU 12 -	DU 12 -	DU 13 -	DU 14 -	DU 15 -	DU 16 -	DU 17 -	DU 18 -	DU 19 -	DU 20 -		
	S123	S124	S125	S126	S127	S128	S129	S130	S131	S132	S133	S134		
	(Primary	(Primary	(Replicate	(Replicate	(Primary	EPA	HDOH							
	Sample)	Sample)	Sample)	Sample)	Sample)	Sample)	Sample)	Sample)	Sample)	Sample)	Sample)	Sample)	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
		yls (EPA 808											1	
PCB - 1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9	1.1
PCB - 1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17	1.1
PCB - 1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17	1.1
PCB - 1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.22	1.1
PCB - 1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.22	1.1
PCB - 1254	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.22	1.1
PCB - 1260	0.0033	0.0019	ND	0.0076	0.0024	0.0067	0.0044	0.0060	ND	0.0023	0.0017	0.0021	0.22	1.1
RCRA Metal										· · -				
Arsenic	11	1.8	4.4	15	2.6	6.7	11	11	1.0	4.7	4.5	8.2	0.39	0.43
Lead	6.8	11	11	46	18	8.5	9.5	11	7.0	7.0	6.7	8.3	400	400
Barium	51	65	67	66	55	53	53	58	95	88	65	64	15,000	3,100
Cadmium	0.22	ND	0.16	0.25	ND	ND	ND	0.42	ND	ND	ND	0.24	70	14
Chromium	78	87	100	98	240	240	230	130	270	250	290	200	280	500
Selenium	3.1	ND	ND	2.7	ND	0.59	390	78						
Silver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	390	78
Mercury	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.3	4.7

Table 5-6: 81-Acre Area outside of the Transmitter Buildings Area Soil Sample Results Summary

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL.

Italic values are estimated as they were detected above the method detection limit but below the reporting limit.

5.2.4 Berms and Mounds

Twenty (20) primary MI soil samples and four replicates, each consisting of 30 increments, were collected from berms and mounds at the investigation site (Figure 3-6). Samples were collected from the surface soil as described in Section 4.1.3.4. The soil samples were analyzed for PCBs (EPA Method 8082) and RCRA metals (EPA Methods 6010B and 7471).

Analytical results of the soil samples indicated the following:

- PCB Aroclor 1260 was detected above laboratory reporting limits in five out of the 20 berms at concentrations ranging from 0.0033 to 0.033 mg/kg. These detected concentrations are all well below the EPA Residential RSL of 0.22 mg/kg and the HDOH Unrestricted Land Use EAL of 1.1 mg/kg. All other PCB Aroclor results were ND.
- Arsenic was detected in all 20 samples at concentrations between 1.8 and 15 mg/kg. All 20 samples exceeded the EPA Residential RSL of 1.6 mg/kg and the HDOH Unrestricted Land Use EAL of 1.9 mg/kg. The concentrations do not exceed the HDOH assumed background level for arsenic of 20 mg/kg.
- Chromium was detected in all 20 samples. Nine (9) of these were at levels above the EPA Residential RSL of 280 mg/kg. The maximum detected chromium result was 480 mg/kg, which is still below the HDOH Unrestricted Land Use EAL of 500 mg/kg.
- Silver and cadmium were not detected at levels above the laboratory reporting limits in any of the berm samples.
- All other RCRA metals results were well below their respective EPA Residential RSLs and HDOH Unrestricted Land Use EALs.

Analytical results are summarized in Table 5-7 below. A complete summary of the soil sample analytical results is presented in Appendix C. The complete analytical laboratory reports are presented in Appendix D.

		_	_	_			_						r	
	Berm 1 - B01 (Primary Sample)	Berm 2 - B02 (Primary Sample)	Berm 3 - B03 (Primary Sample)	Berm 4 - B04 (Primary Sample)	Berm 5 - B05 (Primary Sample)	Berm 6 - B06 (Primary Sample)	Berm 7 - B07 (Primary Sample)	Berm 8 - B08 (Primary Sample)	Berm 9 - B09 (Primary Sample)	Berm 10 - B10 (Primary Sample)	Berm 10 - B11 (Replicate Sample)	Berm 10 - B12 (Replicate Sample)	EPA RSL	HDOH EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphenyl	s (EPA 8082)												
PCB - 1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9	1.1
PCB - 1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17	1.1
PCB - 1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17	1.1
PCB - 1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.22	1.1
PCB - 1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.22	1.1
PCB - 1254	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.22	1.1
PCB - 1260	ND	ND	ND	ND	0.0029	ND	0.0074	ND	0.033	0.019	0.019	0.017	0.22	1.1
RCRA Metals												-	-	
Arsenic	6.4	4.4	2.2	2.4	16	4.3	37	9.1	10	13	10	15	0.39	0.43
Lead	4.8	5.0	8.1	4.7	ND	2.0	7.7	ND	25	12	5.6	5.8	400	400
Barium	78	130	280	230	110	110	140	36	140	150	140	150	15,000	3,100
Cadmium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	70	14
Chromium	250	260	270	290	160	260	350	51	190	220	200	220	280	500
Selenium	ND	ND	ND	ND	1.2	ND	ND	2.5	ND	ND	ND	ND	390	78
Silver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	390	78
Mercury	0.011	0.017	ND	0.0065	ND	ND	ND	ND	ND	ND	ND	ND	4.3	4.7
	Berm 11 - B13	Berm 12 - B14	Berm 13 - B15	Berm 14 - B16	Berm 15 - B17	Berm 16 - B18	Berm 17 - B19	Berm 18 - B20	Berm 19 - B21	Berm 20 - B22	Berm 20 - B23	Berm 20 - B24		
	(Primary	(Primary	(Primary	(Primary	(Primary	(Primary	(Primary	(Primary	(Primary	(Primary	(Replicate	(Replicate	EPA	HDOH
• • •	Sample)	Sample)	Sample)	Sample)	Sample)	Sample)	Sample)	(Primary Sample)	Sample)	Sample)	Sample)	(Replicate Sample)	RSL	EAL
Analyte	Sample) (mg/kg)	Sample) (mg/kg)	· · ·	· ·	· · · · ·			(Primary	· ·	· ·		(Replicate		
Polychlorina	Sample) (mg/kg) ted Biphenyls	Sample) (mg/kg) s (EPA 8082)	Sample) (mg/kg)	Sample) (mg/kg)	Sample) (mg/kg)	Sample) (mg/kg)	Sample) (mg/kg)	(Primary Sample) (mg/kg)	Sample) (mg/kg)	Sample) (mg/kg)	Sample) (mg/kg)	(Replicate Sample) (mg/kg)	RSL (mg/kg)	EAL (mg/kg)
Polychlorina PCB - 1016	Sample) (mg/kg) ted Biphenyls	Sample) (mg/kg) s (EPA 8082) ND	Sample) (mg/kg) ND	Sample) (mg/kg) ND	Sample) (mg/kg) ND	Sample) (mg/kg) ND	Sample) (mg/kg) ND	(Primary Sample) (mg/kg) ND	Sample) (mg/kg) ND	Sample) (mg/kg) ND	Sample) (mg/kg) ND	(Replicate Sample) (mg/kg) ND	RSL (mg/kg) 3.9	EAL (mg/kg)
Polychlorina PCB - 1016 PCB - 1221	Sample) (mg/kg) ted Biphenyls ND ND	Sample) (mg/kg) s (EPA 8082) ND ND	Sample) (mg/kg) ND ND	Sample) (mg/kg) ND ND	Sample) (mg/kg) ND ND	Sample) (mg/kg) ND ND	Sample) (mg/kg) ND ND	(Primary Sample) (mg/kg) ND ND	Sample) (mg/kg) ND ND	Sample) (mg/kg) ND ND	Sample) (mg/kg) ND ND	(Replicate Sample) (mg/kg) ND ND	RSL (mg/kg) 3.9 0.17	EAL (mg/kg) 1.1 1.1
Polychlorina PCB - 1016 PCB - 1221 PCB - 1232	Sample) (mg/kg) ted Biphenyls ND ND ND	Sample) (mg/kg) s (EPA 8082) ND ND ND	Sample) (mg/kg) ND ND ND	Sample) (mg/kg) ND ND ND	Sample) (mg/kg) ND ND ND	Sample) (mg/kg) ND ND ND	Sample) (mg/kg) ND ND ND	(Primary Sample) (mg/kg) ND ND ND	Sample) (mg/kg) ND ND ND	Sample) (mg/kg) ND ND ND	Sample) (mg/kg) ND ND ND	(Replicate Sample) (mg/kg) ND ND	RSL (mg/kg) 3.9 0.17 0.17	EAL (mg/kg) 1.1 1.1 1.1
Polychlorina PCB - 1016 PCB - 1221 PCB - 1232 PCB - 1242	Sample) (mg/kg) ted Biphenyls ND ND ND ND	Sample) (mg/kg) s (EPA 8082) ND ND ND ND	Sample) (mg/kg) ND ND ND ND	Sample) (mg/kg) ND ND ND ND	Sample) (mg/kg) ND ND ND ND	Sample) (mg/kg) ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	(Primary Sample) (mg/kg) ND ND ND ND	Sample) (mg/kg) ND ND ND ND	Sample) (mg/kg) ND ND ND ND	Sample) (mg/kg) ND ND ND ND	(Replicate Sample) (mg/kg) ND ND ND	RSL (mg/kg) 3.9 0.17 0.17 0.22	EAL (mg/kg) 1.1 1.1 1.1 1.1
PCB - 1016 PCB - 1016 PCB - 1221 PCB - 1232 PCB - 1242 PCB - 1248	Sample) (mg/kg) ted Biphenyls ND ND ND ND	Sample) (mg/kg) s (EPA 8082) ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	(Primary Sample) (mg/kg) ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	(Replicate Sample) (mg/kg) ND ND ND ND ND	RSL (mg/kg) 3.9 0.17 0.17 0.22 0.22	EAL (mg/kg) 1.1 1.1 1.1 1.1 1.1 1.1
Polychlorina PCB - 1016 PCB - 1221 PCB - 1232 PCB - 1242 PCB - 1248 PCB - 1254	Sample) (mg/kg) ted Biphenyls ND ND ND ND ND ND	Sample) (mg/kg) s (EPA 8082) ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND ND	(Primary Sample) (mg/kg) ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND ND	(Replicate Sample) (mg/kg) ND ND ND ND ND ND	RSL (mg/kg) 3.9 0.17 0.17 0.22 0.22 0.22	EAL (mg/kg) 1.1 1.1 1.1 1.1 1.1 1.1
Polychlorina PCB - 1016 PCB - 1221 PCB - 1232 PCB - 1242 PCB - 1248 PCB - 1254 PCB - 1260	Sample) (mg/kg) ted Biphenyls ND ND ND ND ND ND ND	Sample) (mg/kg) s (EPA 8082) ND ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	(Primary Sample) (mg/kg) ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND	(Replicate Sample) (mg/kg) ND ND ND ND ND	RSL (mg/kg) 3.9 0.17 0.17 0.22 0.22	EAL (mg/kg) 1.1 1.1 1.1 1.1 1.1 1.1
Polychlorina PCB - 1016 PCB - 1221 PCB - 1232 PCB - 1242 PCB - 1248 PCB - 1254 PCB - 1260 RCRA Metals	Sample) (mg/kg) ted Biphenyls ND ND ND ND ND ND ND ND S (EPA 6010B	Sample) (mg/kg) s (EPA 8082) ND ND ND ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND ND ND 0.0022	Sample) (mg/kg) ND ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND ND ND	(Primary Sample) (mg/kg) ND ND ND ND ND ND 0.0031	Sample) (mg/kg) ND ND ND ND ND ND ND 0.0057	Sample) (mg/kg) ND ND ND ND ND ND ND 0.0036	Sample) (mg/kg) ND ND ND ND ND ND 0.0033	(Replicate Sample) (mg/kg) ND ND ND ND ND ND 0.0033	RSL (mg/kg) 3.9 0.17 0.17 0.22 0.22 0.22 0.22 0.22	EAL (mg/kg) 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
Polychlorina PCB - 1016 PCB - 1221 PCB - 1232 PCB - 1242 PCB - 1242 PCB - 1248 PCB - 1254 PCB - 1260 RCRA Metals Arsenic	Sample) (mg/kg) (mg/kg) ND ND ND ND ND ND ND S (EPA 6010B 4.6	Sample) (mg/kg) s (EPA 8082) ND ND ND ND ND ND ND 77471A) 5.8	Sample) (mg/kg) ND ND ND ND ND ND ND 2.6	Sample) (mg/kg) ND ND ND ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND 0.0022 1.8	Sample) (mg/kg) ND ND ND ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND ND ND ND	(Primary Sample) (mg/kg) ND ND ND ND ND ND 0.0031 2.7	Sample) (mg/kg) ND ND ND ND ND 0.0057 9.1	Sample) (mg/kg) ND ND ND ND ND 0.0036 6.5	Sample) (mg/kg) ND ND ND ND ND 0.0033 6.4	(Replicate Sample) (mg/kg) ND ND ND ND ND ND 0.0033 6.5	RSL (mg/kg) 3.9 0.17 0.17 0.22 0.22 0.22 0.22 0.22	EAL (mg/kg) 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.43
Polychlorina PCB - 1016 PCB - 1221 PCB - 1232 PCB - 1242 PCB - 1248 PCB - 1254 PCB - 1260 RCRA Metals Arsenic Lead	Sample) (mg/kg) ted Biphenyl: ND ND ND ND ND S (EPA 6010B 4.6	Sample) (mg/kg) s (EPA 8082) ND ND ND ND ND ND ND 7471A) 5.8 2.2	Sample) (mg/kg) ND ND ND ND ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND ND 0.0022 1.8 ND	Sample) (mg/kg) ND ND ND ND ND ND ND ND ND ND ND	Sample) (mg/kg) ND ND ND ND ND ND ND ND ND	(Primary Sample) (mg/kg) ND ND ND ND ND 0.0031 2.7 ND	Sample) (mg/kg) ND ND ND ND 0.0057 9.1 7.8	Sample) (mg/kg) ND ND ND ND ND 0.0036 6.5 1.6	Sample) (mg/kg) ND ND ND ND 0.0033 6.4 1.6	(Replicate Sample) (mg/kg) ND ND ND ND ND 0.0033 6.5 1.3	RSL (mg/kg) 3.9 0.17 0.17 0.22 0.22 0.22 0.22 0.22 0.39 400	EAL (mg/kg) 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.43 400
Polychlorina PCB - 1016 PCB - 1221 PCB - 1222 PCB - 1232 PCB - 1242 PCB - 1248 PCB - 1254 PCB - 1260 RCRA Metals Arsenic Lead Barium	Sample) (mg/kg) ted Biphenyl ND ND ND ND ND ND S (EPA 6010B 4.6 ND 32	Sample) (mg/kg) s (EPA 8082) ND ND ND ND ND 77471A) 5.8 2.2 140	Sample) (mg/kg) ND 79	Sample) (mg/kg) ND ND ND ND ND ND ND ND ND ND ND ND 79	Sample) (mg/kg) ND ND ND ND ND ND 0.0022 1.8 ND 200	Sample) (mg/kg) ND ND ND ND ND ND ND ND ND ND 73	Sample) (mg/kg) ND ND ND ND ND ND ND ND ND ND 100	(Primary Sample) (mg/kg) ND ND ND ND ND 0.0031 2.7 ND 100	Sample) (mg/kg) ND ND ND ND ND 0.0057 9.1 7.8 140	Sample) (mg/kg) ND ND ND ND 0.0036 6.5 1.6 130	Sample) (mg/kg) ND ND ND ND 0.0033 6.4 1.6 130	(Replicate Sample) (mg/kg) ND ND ND ND 0.0033 6.5 1.3 130	RSL (mg/kg) 3.9 0.17 0.17 0.22 0.22 0.22 0.22 0.22 0.39 400 15,000	EAL (mg/kg) 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.43 400 3,100
Polychlorina PCB - 1016 PCB - 1221 PCB - 1222 PCB - 1232 PCB - 1242 PCB - 1248 PCB - 1254 PCB - 1260 RCRA Metals Arsenic Lead Barium Cadmium	Sample) (mg/kg) ted Biphenyls ND ND ND ND ND ND Solution ND ND ND ND ND ND Solution AG ND 32 ND	Sample) (mg/kg) ND ND ND ND ND ND ND 77471A) 5.8 2.2 140 ND	Sample) (mg/kg) ND ND	Sample) (mg/kg) ND ND ND ND ND ND ND ND 8.5 ND 79 ND	Sample) (mg/kg) ND ND ND ND ND 0.0022 1.8 ND 200 ND	Sample) (mg/kg) ND ND ND ND ND ND ND ND 13 ND 73 ND	Sample) (mg/kg) ND ND ND ND ND ND ND ND ND 100 ND	(Primary Sample) (mg/kg) ND ND ND ND ND 0.0031 2.7 ND 100 ND	Sample) (mg/kg) ND ND ND ND ND 0.0057 9.1 7.8 140 ND	Sample) (mg/kg) ND ND ND ND 0.0036 6.5 1.6 130 ND	Sample) (mg/kg) ND ND ND ND 0.0033 6.4 1.6 130 ND	(Replicate Sample) (mg/kg) ND ND ND ND ND 0.0033 6.5 1.3 130 ND	RSL (mg/kg) 3.9 0.17 0.22 0.22 0.22 0.22 0.22 0.39 400 15,000 70	EAL (mg/kg) 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.43 400 3,100 14
Polychlorina PCB - 1016 PCB - 1221 PCB - 1221 PCB - 1232 PCB - 1242 PCB - 1248 PCB - 1254 PCB - 1260 RCRA Metals Arsenic Lead Barium Cadmium Chromium	Sample) (mg/kg) ted Biphenyls ND ND ND ND ND S (EPA 6010B 4.6 ND 32 ND 49	Sample) (mg/kg) ND ND ND ND ND ND ND 77471A) 5.8 2.2 140 ND 480	Sample) (mg/kg) ND AD	Sample) (mg/kg) ND ND ND ND ND ND ND 8.5 ND 79 ND 440	Sample) (mg/kg) ND ND ND ND ND 0.0022 1.8 ND 200 ND 450	Sample) (mg/kg) ND ND ND ND ND ND ND 13 ND 73 ND 320	Sample) (mg/kg) ND ND ND ND ND ND ND 9.0 ND 100 ND 380	(Primary Sample) (mg/kg) ND ND ND ND ND 0.0031 2.7 ND 100 ND 430	Sample) (mg/kg) ND ND ND ND ND 0.0057 9.1 7.8 140 ND 200	Sample) (mg/kg) ND ND ND ND 0.0036 6.5 1.6 130 ND 220	Sample) (mg/kg) ND ND ND ND 0.0033 6.4 1.6 130 ND 210	(Replicate Sample) (mg/kg) ND ND ND ND 0.0033 6.5 1.3 130 ND 210	RSL (mg/kg) 3.9 0.17 0.17 0.22 0.22 0.22 0.22 0.22 0.39 400 15,000 70 280	EAL (mg/kg) 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.43 400 3,100 14 500
Polychlorina PCB - 1016 PCB - 1221 PCB - 1232 PCB - 1242 PCB - 1248 PCB - 1254 PCB - 1254 PCB - 1260 <i>RCRA Metals</i> Arsenic Lead Barium Cadmium Chromium Selenium	Sample) (mg/kg) ted Biphenyls ND ND ND ND ND S (EPA 6010B) 32 ND 49 1.5	Sample) (mg/kg) ND ND ND ND ND ND ND 77471A) 5.8 2.2 140 ND 480 ND	Sample) (mg/kg) ND A30	Sample) (mg/kg) ND ND ND ND ND ND ND 8.5 ND 79 ND 440 ND	Sample) (mg/kg) ND ND ND ND ND 0.0022 1.8 ND 200 ND 450 ND	Sample) (mg/kg) ND ND ND ND ND ND ND 13 ND 73 ND 73 ND 320 ND	Sample) (mg/kg) ND ND ND ND ND ND ND 9.0 ND 100 ND 380 ND	(Primary Sample) (mg/kg) ND ND ND ND ND 0.0031 2.7 ND 100 ND 430 ND	Sample) (mg/kg) ND ND ND ND ND 0.0057 9.1 7.8 140 ND 200 ND	Sample) (mg/kg) ND ND ND ND 0.0036 6.5 1.6 130 ND 220 ND	Sample) (mg/kg) ND ND ND ND 0.0033 6.4 1.6 130 ND 210 ND	(Replicate Sample) (mg/kg) ND ND ND ND ND 0.0033 6.5 1.3 130 ND 210 ND	RSL (mg/kg) 3.9 0.17 0.17 0.22 0.22 0.22 0.22 0.22 0.39 400 15,000 70 280 390	EAL (mg/kg) 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.43 400 3,100 14 500 78
Polychlorina PCB - 1016 PCB - 1221 PCB - 1222 PCB - 1232 PCB - 1242 PCB - 1248 PCB - 1254 PCB - 1260 RCRA Metals Arsenic Lead Barium Cadmium Chromium	Sample) (mg/kg) ted Biphenyls ND ND ND ND ND S (EPA 6010B 4.6 ND 32 ND 49	Sample) (mg/kg) ND ND ND ND ND ND ND 77471A) 5.8 2.2 140 ND 480	Sample) (mg/kg) ND AD	Sample) (mg/kg) ND ND ND ND ND ND ND 8.5 ND 79 ND 440	Sample) (mg/kg) ND ND ND ND ND 0.0022 1.8 ND 200 ND 450	Sample) (mg/kg) ND ND ND ND ND ND ND 13 ND 73 ND 320	Sample) (mg/kg) ND ND ND ND ND ND ND 9.0 ND 100 ND 380	(Primary Sample) (mg/kg) ND ND ND ND ND 0.0031 2.7 ND 100 ND 430	Sample) (mg/kg) ND ND ND ND ND 0.0057 9.1 7.8 140 ND 200	Sample) (mg/kg) ND ND ND ND 0.0036 6.5 1.6 130 ND 220	Sample) (mg/kg) ND ND ND ND 0.0033 6.4 1.6 130 ND 210	(Replicate Sample) (mg/kg) ND ND ND ND 0.0033 6.5 1.3 130 ND 210	RSL (mg/kg) 3.9 0.17 0.17 0.22 0.22 0.22 0.22 0.22 0.39 400 15,000 70 280	EAL (mg/kg) 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.43 400 3,100 14 500

Table 5-7: Berms and Mounds Soil Sample Results Summary

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL.

Italic values are estimated as they were detected above the method detection limit but below the reporting limit.

5.2.5 Groundwater

Six primary groundwater samples and one duplicate groundwater sample were collected from the six groundwater MWs installed at the investigation site. Samples were collected from MWs as described in Section 4.1.3.5. The groundwater samples were analyzed for PCBs (EPA Method 8082), RCRA metals (EPA Methods 6010B and 7471), TPH-G, TPH-D, and TPH-O (EPA Method 8015B), MTBE (EPA Method 8260B), BTEX (EPA Method 8260B), PAHs (EPA Method 8270 SIM), and HVOCs (EPA Method 8260B).

Analytical results of the groundwater samples indicated the following:

- Two VOCs, Trichloroethene and Toluene, were detected in six and three of the groundwater samples, respectively. These detected results were below their reporting limits and well below the HDOH Groundwater Action Levels (GALs) of 480 μg/L for Trichloroethene and 400 μg/L for Toluene.
- Gasoline Range Organics (GRO) were detected in all groundwater samples at concentrations between 150 and 510 μ g/L. These results are all below the HDOH GAL of 5,000 μ g/L.
- Diesel Range Organics (DRO) and Residual Range Organics (RRO) were detected in one and five groundwater samples, respectively. These detected results were below their reporting limits and well below the HDOH GAL of 2,500 μg/L for both DRO and RRO.
- Barium was detected in all seven groundwater samples at concentrations between 14 and 30 μg/L. These concentrations are well below the HDOH GAL of 2,000 μg/L.
- Arsenic and chromium were detected in two groundwater samples each. Results for each compound were below their reporting limits and well below the HDOH GALs of 69 μg/L for Arsenic and 570 μg/L for Chromium.
- PCBs were not detected in any of the groundwater samples.

Analytical results are summarized in Table 5-8 below. A complete summary of the groundwater sample analytical results is presented in Appendix C. The complete analytical laboratory reports are presented in Appendix D.

				-		-		
Analyte	MW-1 - W03 (Primary Sample)	MW-2 - W01 (Primary Sample)	MW-2 - W02 (Duplicate Sample)	MW-3 - W04 (Primary Sample)	MW-4 - W05 (Primary Sample)	MW-5 - W07 (Primary Sample)	MW-6 - W06 (Primary Sample)	HDOH GAL
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Volatile Organ	ic Compour	nds (EPA 82	60B)		-			
Trichloroethene	ND	0.71	0.53	0.32	0.50	0.35	0.53	480
Toluene	ND	ND	0.084	ND	0.084	ND	ND	400
Gasoline Rang HI Gasoline Range			Í					
Organics	170	510	490	200	160	150	230	5,000
Diesel Range	Organics (El	PA 8015B)						
HI Diesel Range Organics	ND	ND	62	ND	ND	ND	ND	2,500
HI Residual Range Organics	ND	93	150	62	ND	93	67	2,500
RCRA Metals	(EPA 6010B/	/7471A)						
Arsenic	ND	ND	5.1	ND	ND	5.6	ND	69
Barium	29	29	30	26	22	14	15	2,000
Chromium	4	ND	ND	ND	ND	6.9	ND	570

Table 5-8: Groundwater Sample Results Summary

Bold values indicate that detected concentration exceeds the HDOH GAL where groundwater is not a current or potential drinking water. Italic values are estimated as the analyte was detected below the reporting limit, but above the method detection limit. ND = Not detected

All PCB (EPA 8082) results were ND.

All SVOC (EPA 8270C) results were ND.

5.2.6 PCB Congeners

The September 2010 sampling event included the collection of five soil samples to be analyzed for PCB congeners by EPA Method 1668. The purpose of the analysis was to evaluate the relative composition of the 209 PCB congeners. The analytical data is included in Appendix F.

Section 6 Data Quality Assessment and Quality Control

This section presents the data quality assessment for data derived during this project. The field activities consisted of the collection of soil samples, concrete samples, and groundwater samples from the project investigation areas.

The usability of the data collected during this characterization depends on its quality. A large number of factors included in the sample collection and analysis process had the potential to impact the overall quality of the data generated during the project. Adhering to proper sample collection techniques, observing and documenting COC procedures and using certified laboratories and approved analytical methods have ensured that the quality of data generated during the project accurately represents conditions at the site and its vicinity.

6.1 Field Sampling Quality Control

Sample representativeness was ensured through the use of trained sampling personnel, industry-standardized procedures (as detailed in the project WP), peer review of field logs and notes and collection of quality control (QC) samples.

Field QC sample collection was conducted in adherence to industry standards and consisted of collection of field duplicates and replicates, which were sent "blind" to the analytical laboratory.

6.1.1 Field Duplicates

Field duplicates were collected in order to provide a precision assessment of the sample results as well as an assessment of the sample collection and analytical process. The field duplicate samples were submitted to the RaPID assay kit processors and or off-site laboratory with unique sample identification numbers so as to be "blind" to the laboratory.

Field sampling, laboratory sub-sampling, and analytical precision was evaluated from the field duplicate sample analyses results (Appendix E, Tables E-1, E-6, and E-7). The relative percent difference (RPD) measured of the field duplicates served as a quantitative measure of precision. The RPD (expressed as a percent) for the data set represents how precisely the analytical method measures the concentration of the contaminant(s) detected. The lower the RPD the more precise the duplicates are or the analytical methods are in accurately estimating the contaminant concentration.

Comparison of Primary and Duplicate Soil and Water Sample Laboratory Analytical Results

Previously Identified PCB-Contaminated Area

- The RPD values for the PCB results from the primary and duplicate samples both analyzed by RaPID assay kits ranges from 1% to 127%. The high RPD values indicate that there is high variability in the soil matrix or that the immunoassay kits do not provide a very high degree of precision, or both.
- The RPD values for the PCB results from the primary sample analyzed by the RaPID assay kit and the duplicate sample analyzed by the off-site laboratory ranges from 1% to

194%. The RPD values for nearly all results are very high due to the inability to obtain precision between the off-site laboratory and the PCB immunoassay kits. In general, the laboratory results were 5 to 10 times higher than the immunoassay kit results. A potential reason for this difference may be an inability of the immunoassay kit to fully extract the PCBs from the soil matrix.

Groundwater

- The relative percent difference (RPD) value for Trichloroethene is 29%. The low RPD value indicates that the detected concentrations are considered valid for decision-making.
- The RPD value for Toluene is 10%. The low RPD value indicates that the detected concentrations are considered valid for decision-making.
- The RPD value for GRO is 4.0%. The low RPD value indicates that the detected concentrations are considered valid for decision-making.
- The RPD value for DRO is 0.0%. The low RPD value indicates that the detected concentrations are considered valid for decision-making.
- The RPD value for Arsenic is 8.2%. The low RPD value indicates that the detected concentrations are considered valid for decision-making.
- The RPD value for Barium is 3.4%. The low RPD value indicates that the detected concentrations are considered valid for decision-making.
- The RPD value for RRO is 47%. Considering that the detected RRO concentrations in groundwater are below reporting limits and over one order of magnitude lower than the HDOH GAL, the detected concentrations are considered valid for decision-making.

PCB Congeners

- No sample duplicates were collected for the PCB congener analyses, however, as the samples were screened through the EPA Method 8082 prior to analysis by EPA Method 1668, some general comparisons could be made.
- In comparing the sum of the Aroclors from the Method 8082 analysis with the sum of the congeners from the Method 1668 analysis, and correcting for the coeluting congeners, the RPD for two of the samples were within 10%, one was 20%, and two were nearly 70%.
- Analysis of PCB Aroclors by Method 8082 could overestimate the amount of total PCBs, however, with the RPD over 30%, it is likely due to the high variability of PCBs in the soils.
- It should be noted that the sample was shipped to TestAmerica Tacoma, where it was split into subsamples for analysis for Method 8082 analysis by TestAmerica Tacoma and Method 1668 analysis performed by TestAmerica West Sacramento.

6.1.2 Field Replicates

Field replicates were collected from the DUs in order to provide a precision assessment of the sample results as well as an assessment of the sample collection and analytical process.

Replicate samples were collected from DUs in each investigation area. The field replicate samples were submitted to the laboratory with unique sample identification numbers so as to be "blind" to the laboratory.

Field sampling, laboratory sub-sampling, and analytical precision was evaluated from the field replicate sample analyses results (Appendix E, Tables E-2, E-3, E-4, and E-5). The RSD measured of the field replicates served as a quantitative measure of precision. The RSD (expressed as a percent) for the data set represents how precisely the three replicates measure the average concentration of the contaminant(s) detected in the decision unit. The lower the RSD, also called the "coefficient of variation," the more precise the replicates are as an estimate of the average contaminant concentration in the decision unit under investigation.

An RSD of 35% or less indicates the amount of estimated error is within a reasonable range for decision-making. In instances where an RSD is determined to be 40% to 50%, but the contaminant concentration is a factor of 3 to 4 times below the relevant EAL, then a decision that the contaminant is below levels of concern would still be valid.

Comparison of Primary and Replicate Soil Sample Laboratory Analytical Results

Four-Acre Transmitter Buildings Area

- The RSD value for PCB Aroclor 1260 from the initial DU sampling was 92%. PCB Aroclor 1260 was detected at levels above the HDOH Unrestricted Land Use EAL. The RSD is likely very high due to inclusion of soils near the previously identified PCB contaminated areas.
- The RSD value for the PCB Aroclor 1260 from the follow-up DU sampling was 17%, which indicates that the detected concentrations are considered valid for decision-making.
- The RSD value for Lead from the initial DU sampling was 153%.
- The RSD value for Lead from the follow-up DU sampling was 73%. Although this value is still relatively high, Lead was detected at concentrations of 15 to 130 mg/kg, all well below the HDOH Unrestricted Land Use EAL and EPA Residential RSL of 400 mg/kg.
- The RSD values for DRO and RRO from the initial DU sampling are 65% and 67%, respectively. Considering that the detected DRO and RRO concentrations are approximately two orders of magnitude lower than the HDOH Unrestricted Land Use EALs, the detected concentrations are considered valid for decision-making. The follow-up DU samples were not analyzed for DRO or RRO.
- The RSD value for arsenic is 10%. The low RSD value for arsenic indicates that the detected concentrations are considered valid for decision-making. The follow-up DU samples were not analyzed for arsenic.

80-Acre Area outside of the Transmitter Buildings Area

- The RSD values for PCB Aroclor 1260 are 2% and 102% for the two sets of replicate samples. Considering that the detected PCB Aroclor 1260 concentrations in this investigation area are approximately two orders of magnitude lower than the EPA Residential RSLs, the detected concentrations are considered valid for decision-making.
- The RSD values for Lead are 114% and 89% for the two sets of replicate samples. Considering that the detected Lead concentrations in this investigation area are an order

of magnitude lower than the EPA Residential RSLs and HDOH Unrestricted Land Use EALs, the detected concentrations are considered valid for decision-making.

• The RSD values for Arsenic are 26% and 99% for the two sets of replicate samples. Considering that all Arsenic concentrations in this investigation area are below the HDOH assumed background level for arsenic of 20 mg/kg, the detected concentrations are considered valid for decision-making.

Berms and Mounds

- The RSD values for PCB Aroclor 1260 are 6% and 5% for the two sets of replicate samples. The low RSD values indicate that the detected concentrations are considered valid for decision-making.
- The RSD values for Lead are 47% and 11% for the two sets of replicate samples. Considering that the detected Lead concentrations in this investigation area are two orders of magnitude lower than the EPA Residential RSLs and HDOH Unrestricted Land Use EALs, the detected concentrations are considered valid for decision-making.
- The RSD values for Arsenic are 20% and 1% for the two sets of replicate samples. The low RSD values indicate that the detected concentrations are considered valid for decision-making.

6.1.3 Sample Handling and Custody

Industry standard sample handling and COC procedures were adhered to during all sampling and sample handling activities.

All soil samples were kept at approximately $4^{\circ}C \pm 2^{\circ}C$ in insulated coolers packed with ice. Samples were properly preserved and hand delivered to TestAmerica - Honolulu, or shipped via Federal Express to TestAmerica - Tacoma or AmeriSci Los Angeles along with completed COC forms.

6.1.4 Deviations of Field Standard Operating Procedures

There were no deviations from standard operating procedures during field activities for this project.

6.2 Analytical Quality Control/Procedures

Analytical methods utilized during this project included standard laboratory methods.

6.2.1 Laboratory Analytical Procedures

The laboratories selected to perform the soil analyses (TestAmerica - Honolulu, TestAmerica - Tacoma, AmeriSci Los Angeles) have Quality Assurance/Quality Control (QA/QC) programs in place and are certified by the National Environmental Laboratory Accreditation Conference (NELAC). All analyses were conducted according to the guidance outlined in EPA SW-846 (EPA, 1996) and the *Department of Defense, Quality Systems Manual for Environmental Laboratories* (Department of Defense Environmental Data Quality Workgroup, 2000).

6.2.2 Deviations from Laboratory Standard Operating Procedures

There were no significant deviations from standard operating procedures during laboratory activities during this project. Any deviations from standard operating procedures are listed in the individual laboratory reports included in Appendix D.

Section 7 Summary and Conclusions

7.1 Summary

E2 completed an environmental site characterization of the former VOA site, located in Maili on the island of Oahu, Hawaii. The former VOA site has an area of approximately 89 acres and is located southeast of the intersection of Kulaaupuni Street and the Maili Channel. A 5-acre portion of the former VOA site is currently leased by the State of Hawaii and has been developed for transitional housing. The remainder of the former VOA site is the 84-acre project site that was investigated during this site characterization. The site is currently vacant and is bounded by Kulaaupuni Street to the west, the northern portion of the Maili Channel (formerly Holt Road) to the north, a vacant property to the east, and residential housing along Kulawae Street to the south.

MI soil sampling strategies, discrete grid sampling, and groundwater sampling were employed to characterize the project site. The five investigation areas were selected based on historical use, previous investigation results, and topography. Collection of samples was as follows:

- Previously Identified PCB-Contaminated Area This investigation area encompassed the area within the Transmitter Buildings Area that was previously identified to be contaminated with PCBs. Two hundred forty-two (242) discrete sampling locations were sampled within an approximately 200-foot by 250-foot grid to determine the lateral and vertical extent of PCB contamination in soil.
- 4-Acre Transmitter Buildings Area This investigation area encompassed the former site of the VOA broadcast transmitter buildings (referred to in this report as the Transmitter Buildings Area). A MI surface soil sample was collected from 30 increment sample locations located throughout the DU encompassing the entire investigation area and analyzed for PCBs, RCRA metals, TPH-G, TPH-D, TPH-O, and asbestos. This investigation area was further subdivided into five DUs and five MI surface soil samples were collected and analyzed for PCBs and lead.
- The large concrete slab foundation in the Transmitter Buildings Area was divided into seven (7) DUs. One MI sample was collected from each concrete slab DU and analyzed for PCBs. Three discrete soil samples were also collected from beneath the concrete slab and analyzed for organochlorine pesticides.
- 80-Acre Area outside of the Transmitter Buildings Area This investigation area encompassed the project area remaining outside of the Transmitter Buildings Area. MI surface soil samples were collected from 20 DUs within this investigation area. Each MI sample was collected from 30 increment sample locations and analyzed for PCBs and RCRA metals.
- Berms and Mounds This investigation area consisted of berms and mounds found throughout the project site. An electromagnetic survey was completed to determine if construction debris or other solid waste had been disposed and buried within the berms and mounds. The berms and mounds were also trenched and sampled to determine the presence and extent of associated contamination. Twenty (20) MI soil samples were collected from the berms and mounds located throughout the investigation area and were analyzed for PCBs and RCRA metals.

- Groundwater Six groundwater MWs were installed surrounding the Transmitter Buildings Area to determine if historic use resulted in contamination of groundwater. Groundwater samples were collected and analyzed for PCBs, RCRA metals, and petroleum-related contamination (including BTEX, MTBE, PAHs, and HVOCs).
- PCB Congeners Five soils samples were collected from the Previously Identified PCB-Contaminated Area to evaluate the relative composition of the 209 PCB congeners.

The discrete soil samples from the Previously Identified PCB-contaminated Area were collected on July 28 through July 30, August 5 and 18, and September 17, 2009, as well as May 27 and September 1, 2010. The MI soil samples from the 4-acre Transmitter Buildings Area were collected on July 31 and December 29, 2009. The concrete foundation MI samples were collected on May 20 and September 1, 2010. The soil samples from directly beneath the concrete foundation were collected on May 19, 2010. The MI soil samples from the 80-acre area outside of the Transmitter Buildings Area were collected on July 30 and 31, 2009. The MI soil samples from the berms and mounds were collected on August 25 and 26, 2009. The groundwater samples were collected on August 13, 2009.

7.1.1 Investigation Area Analytical Results

Previously Identified PCB-Contaminated Area

Three hundred eighty-three (383) primary samples and 46 duplicates were collected from 242 sampling nodes within an approximately 200-foot by 250-foot area surrounding the two previously identified PCB-contaminated areas and were analyzed using RaPID assay kits. In addition to the field duplicates, 42 replicate samples were collected and sent to the analytical laboratory. The correlation between the RaPID assay kits and the analytical laboratory was not reliable. All grid extension samples were analyzed in a laboratory by method 8082 and the exterior of the grid was completely encompassed by lab samples. PCB analytical results indicated the following:

- PCBs were detected in surface and subsurface soils down to depths of 4 feet bgs with detected concentrations ranging from 0.0004 to 62,600 mg/kg.
- The estimated volume of PCB contaminated soil that is in exceedance of the EPA Residential RSL of 0.22 mg/kg is 1,315 cubic yards.
- The estimated volume of PCB contaminated soil that is in exceedance of the TSCA High Occupancy Area cleanup level of 1.0 mg/kg is 867 cubic yards.
- The estimated volume of PCB contaminated soil that is above 10 mg/kg is 344 cubic yards.
- The estimated volume of PCB contaminated soil that is above 50 mg/kg is 203 cubic yards.

4-Acre Transmitter Buildings Area

One primary soil sample and two replicates were initially collected from 30 increment sample locations within the 4-acre Transmitter Buildings Area. After the completion of the PCB grid expansion, the investigation area was subdivided into five DUs and re-sampled for PCBs and lead. Analytical results of the soil samples indicated the following:

- PCB Aroclor 1260 was initially detected in the primary sample and both replicate samples at levels ranging from 1.8 to 15 mg/kg, which are above the EPA Residential RSL of 0.22 mg/kg and the HDOH Unrestricted Land Use EAL of 1.1 mg/kg. All other PCB Aroclor results were ND.
- In the follow-up sampling, PCB Aroclor 1260 was detected in the five DUs at levels ranging from 0.060 to 2.6 mg/kg. Two DU samples were well below the EPA Residential RSL of 0.22 mg/kg and all but one was below the HDOH Unrestricted Land Use EAL of 1.1 mg/kg. All other PCB Aroclor results were ND.
- Lead was initially detected in the primary sample and both replicate samples at levels ranging from 54 to 1,900 mg/kg. The replicate sample with the result of 1,900 mg/kg is in exceedance of the EPA Residential RSL and the HDOH Unrestricted Land Use EAL, both of which are 400 mg/kg.
- In the follow-up sampling, lead was detected in the five DUs at levels ranging from 15 to 130 mg/kg. All detected concentrations were below the EPA Residential RSL and the HDOH Unrestricted Land Use EAL, both of which are 400 mg/kg.
- Arsenic was initially detected in the primary sample and both replicate samples at levels ranging from 9.0 to 11 mg/kg. These values exceed the EPA Residential RSL of 0.39 mg/kg and the HDOH Unrestricted Land Use EAL of 0.43 mg/kg. The concentrations do not exceed the HDOH assumed background level for arsenic of 20 mg/kg.
- Silver was not detected in initial MI samples collected from the investigation area. All other RCRA metals (Barium, Cadmium, Chromium, Selenium, and Mercury) were detected in the primary sample and one or both replicate samples, but at levels below the EPA Residential RSLs and the HDOH Unrestricted Land Use EALs.
- TPHs were detected in the initial primary sample and both replicate samples, but at levels below the EPA Residential RSLs and the HDOH Unrestricted Land Use EALs.
- Asbestos was not detected in the initial primary sample or either replicate samples.

The large concrete slab foundation within this investigation area was divided into seven (7) DUs. MI concrete samples were collected from each and sent to the analytical laboratory. PCB analytical results indicated the following:

- Of the 7 primary surface MI samples collected, 6 samples exceeded the EPA Residential RSL of 0.22 mg/kg with concentrations ranging from 0.1 to 225 mg/kg.
- Four of the seven DUs had PCB concentrations in exceess of 50 mg/kg, accounting for approximately 1,350 cubic feet of concrete.
- The remaining 3 DUs with PCB concentrations below 50 mg/kg comprise approximately 1,570 cubic feet of concrete.

Three discrete soil samples were collected from beneath the large concrete slab within this investigation area. Analytical results of the samples of the soil beneath the concrete slab indicated the following:

• 4,4'-DDD was detected in one of the three samples at a concentration of 0.0049 mg/kg. This is below the EPA Residential RSL and HDOH EAL of 2.0 mg/kg.

- 4,4'-DDE was detected in two of the three samples at concentrations of 0.015 mg/kg and 0.00013 mg/kg. These concentrations are below the EPA Residential RSL and HDOH EAL of 1.4 mg/kg.
- 4,4'-DDT was detected in two of the three samples at concentrations of 0.024 mg/kg and 0.00086 mg/kg. These concentrations are below the EPA Residential RSL and HDOH EAL of 1.7 mg/kg.

Eighty Acre Area outside of the Transmitter Buildings Area

Twenty (20) primary MI surface soil samples and four replicates were collected from 20 DUs in the 80-acre area outside of the Transmitter Buildings Area. Each MI sample was collected from 30 increment sample locations within each DU. Analytical results of the soil samples indicated the following:

- PCB Aroclor 1260 was detected above laboratory reporting limits in eight DUs at concentrations ranging from 0.0031 to 0.015 mg/kg, which are well below the EPA Residential RSL of 0.22 mg/kg and the HDOH Unrestricted Land Use EAL of 1.1 mg/kg. All other PCB Aroclor results were ND.
- Arsenic was detected in all 20 MI samples at concentrations between 2.0 and 17 mg/kg. All 20 samples exceeded the EPA Residential RSL of 1.6 mg/kg and the HDOH Unrestricted Land Use EAL of 1.9 mg/kg. The concentrations do not exceed the HDOH assumed background level for arsenic of 20 mg/kg.
- All other RCRA metals results were well below their respective EPA Residential RSLs and the HDOH Unrestricted Land Use EALs.

Berms and Mounds

Twenty (20) primary MI soil samples and four replicates, each consisting of 30 increments, were collected from berms and mounds at the investigation site. Analytical results of the soil samples indicated the following:

- PCB Aroclor 1260 was detected above laboratory reporting limits in five out of the 20 berms at concentrations ranging from 0.0033 to 0.033 mg/kg. These detected concentrations are all well below the EPA Residential RSL of 0.22 mg/kg and the HDOH Unrestricted Land Use EAL of 1.1 mg/kg. All other PCB Aroclor results were ND.
- Arsenic was detected in all 20 berms at concentrations between 1.8 and 15 mg/kg. All 20 samples exceeded the EPA Residential RSL of 1.6 mg/kg and the HDOH Unrestricted Land Use EAL of 1.9 mg/kg. The concentrations do not exceed the HDOH assumed background level for arsenic of 20 mg/kg.
- Chromium was detected in all 20 berm samples. Nine of these were at levels above the EPA Residential RSL of 280 mg/kg. The maximum detected Chromium result was 480 mg/kg, which is still below the HDOH Unrestricted Land Use EAL of 500 mg/kg.
- Silver and Cadmium were not detected at levels above the laboratory reporting limits in any of the berm samples.
- All other RCRA metals results were well below their respective EPA Residential RSLs and HDOH Unrestricted Land Use EALs.

Groundwater

Six primary groundwater samples and one duplicate sample were collected from the six groundwater MWs installed at the investigation site. Analytical results of the groundwater samples indicated the following:

- Two VOCs, Trichloroethene and Toluene, were detected in six and three of the groundwater samples, respectively. The detected results were below reporting limits and were well below the HDOH GALs of 480 μ g/L for Trichloroethene and 400 μ g/L for Toluene.
- GRO were detected in all groundwater samples at concentrations between 150 and 510 μ g/L. The detected results are all below the HDOH GAL of 5,000 μ g/L.
- DRO and RRO were detected in one and five groundwater samples, respectively. The detected results were below reporting limits and were well below the HDOH GAL of $2,500 \mu g/L$ for both DRO and RRO.
- Barium was detected in all seven groundwater samples at concentrations between 14 and 30 μ g/L. The detected concentrations are well below the HDOH GAL of 2,000 μ g/L.
- Arsenic and Chromium were detected in two groundwater samples each. Results for each compound were below reporting limits and were well below the HDOH GALs of 69 μg/L for Arsenic and 570 μg/L for Chromium.

PCB Congeners

Five soil samples were collected from the Previously Identified PCB-Contaminated Area and analyzed for PCB congeners by EPA Method 1668. The purpose of the analysis was to evaluate the relative composition of the 209 PCB congeners.. Analytical results of the samples are included in Appendix F.

7.2 Conclusions

Discrete soil sampling results indicate that PCB contamination is present in surface and subsurface soil down to 4 feet bgs in the 200-foot by 250-foot sampling grid area that encompasses the two PCB-contaminated areas previously identified within the Transmitter Buildings Area. A significant portion of this sampling grid area contains PCB levels that exceed EPA Residential RSLs and HDOH Unrestricted Land Use EALs. Estimated soil volumes containing PCB concentrations that exceed various contamination thresholds are presented in Table 5-1. The distributions of contaminated soil above the various thresholds within the sampling grid area are displayed on Figures 5-2 through 5-5.

MI surface soil sampling from the 4-acre Transmitter Buildings Area indicates that one of the five DUs contains PCB Aroclor 1260 at a concentration greater than both the EPA Residential RSL and the HDOH Unrestricted Land Use EAL. This DU surrounds the PCB-contaminated area targeted by the discrete sampling. Taking into consideration all the grid expansions, the grid appears to be fully characterized (Figure 5-7). The data also indicates that PCB contamination above the HDOH Unrestricted Land Use EAL is bounded by this DU.

MI sample results from the concrete slab foundation within the Transmitter Buildings Area indicate that PCB contamination is present in the concrete surface at levels in exceedance of

EPA Residential RSLs and HDOH Unrestricted Land Use EALs. Analytical results are displayed on Figure 5-8. Analytical results of soil samples collected from beneath the concrete slab indicate the that 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT are present at levels below the EPA Residential RSLs and HDOH Unrestricted Land Use EALs.

In addition, the MI soil sample results indicate that the areas of the project site outside of the Transmitter Buildings Area do not contain significant levels of PCBs or RCRA metals (i.e., levels were below EPA Residential RSLs and HDOH Unrestricted Land Use EALs). Electromagnetic toning and trenching of a select number of berms and mounds found throughout the project site did not indicate buried debris within the berms and mounds. MI soil sampling of the berms and mounds indicated that several of the berms and mounds have levels of Chromium elevated above the EPA Residential RSL, but below the HDOH Unrestricted Land Use EAL.

Arsenic was also detected in soils throughout the entire project site. However, the levels detected were all below the HDOH accepted naturally-occurring background concentration.

Groundwater sample results indicate that trace levels of petroleum contamination are present in the groundwater surrounding the Transmitter Buildings Area. However, the levels detected are orders of magnitude lower than the HDOH GALs.

Section 8 References

- CH2M Hill, 2003. *Final Work Plan, Base-Wide Ambient Metals Study, Hickam Air Force Base, Oahu, Hawaii.* Plan prepared for the United States Air Force, 15th Airlift Wing, Environmental Restoration Program, report dated July 28.
- Department of Defense Environmental Data Quality Workgroup, 2000. Department of Defense, Quality Systems Manual for Environmental Laboratories. Version 1. October.
- Element Environmental, LLC (E2), 2009a <the Phase I EDDA Report for 5-acre>
- E2, 2009b. Final Phase II Confirmatory Sampling Report, 5-acre Portion of the Former Voice of America Site, Maili, Oahu, Hawaii, prepared for USCG CEU. January.
- E2, 2009c. Final Phase II Confirmatory Sampling Work Plan, 84-Acre Portion of the Former Voice of America Site, Maili, Oahu, Hawaii, prepared for USCG CEU. June.
- E2, 2010. Final Environmental Due Diligence Audit, Phase I Liability Assessment, 84-Acre Portion of the Former Voice of America Site, Maili, Oahu, Hawaii, prepared for USCG CEU. January.>
- Environmental Protection Agency, United States (EPA), 1979. *Methods for Chemical Analysis of Water and Wastes*. EPA 600/4-79-020. Revised. March
- EPA, 1996. Test Methods for Evaluating Solid Waste, SW-846. 3rd ed. Final Update III. Washington. GPO. November.
- EPA, 2001. EPA Requirements for Quality Assurance Project Plans, EPA QA/R-5. EPA/240/B-01/003. Quality Assurance Division. March.
- EPA, 2003. Guidance for Obtaining Representative Laboratory Analytical Subsamples from Particulate Laboratory Samples. EPA/600/R-03/027. Office of Research and Development. November.
- EPA, 2006. *Guidance on Systematic Planning using the Data Quality Objective Process.* EPA/240/B-06/001. Office of Environmental Information. February.
- EPA, 2009. Region 9 Regional Screening Levels. Updated December.
- HDOH, 2008a. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Volume 1: Summary Tier 1 Lookup Tables. Prepared by: State of Hawaii, Department of Health, Hazard Evaluation and Emergency Response Office, Environmental Management Division. Interim Final – May 2005 (Updated August 2006-33 chemicals added). Updated October.
- HDOH, 2008b. Technical Guidance Manual for the Implementation of the Hawaii State Contingency Plan, Prepared by State of Hawaii, Department of Health, Hazard Evaluation and Emergency Response Office. Interim Final – November.

- MACTEC Engineering and Consulting, Inc., (MACTEC), 2007a. Phase I Environmental Site Assessment, Approximately 5-Acre Parcel, Former Coast Guard Transmitter Site, Maili, Oahu, Hawaii. March.
- MACTEC, 2007b. Phase I Environmental Site Assessment, Former Coast Guard Site, Maili, Oahu, Hawaii. March.
- MACTEC, 2007c. Draft Report of Phase II Activities, Former Coast Guard Transmitter Site, Maili, Hawaii, prepared for Safety and Environmental Management Branch (9PMS), General Services Administration. July 26.
- MACTEC, 2008. Draft Supplemental Phase II Activities, Former Coast Guard Transmitter Site, Maili, Hawaii, prepared for Safety and Environmental Management Branch (9PMS), General Services Administration. June 18.
- Mink, J.F. and Lau, S., 1990. "Aquifer Identification and Classification for the Island of Oahu Groundwater Protection Strategy for Hawaii". Water Resources Research Center, University of Hawaii. Technical Report 186. February.
- Stearns, H.T., 1985. Geology of the State of Hawaii, 335 pp., Pacific Books, Palo Alto, CA.
- USDA, 2008. Soil Survey of the Island of Oahu, State of Hawaii. U.S. Department of Agriculture Soil Conservation Service in cooperation with the University of Hawaii Agricultural Experiment Station, U.S. Government Printing Office, 1973. http://www.ctahr.hawaii.edu/soilsurvery/hawaii/Hawaii.htm.

Appendix A Project Photographs

Photograph 1: Digging prior to collection of soil sample within the PCB contaminated soil grid. Direction: Facing Northwest.

Photograph 2: Typical soil core collected using slide hammer within the PCB contaminated grid.

Photograph 3: Trenching of Berm 16. Direction: Facing West.

Photograph 4: Trenching of Berm 10. Direction: Facing West.

Photograph 5: Drilling monitoring well MW-4. Direction: Facing Southwest.

Photograph 6: Completed installation of monitoring well MW-5.

Photograph 7: Sampling within the PCB contaminated soil grid. Direction: Facing West.

Photograph 8: Collecting 2'bgs soil sampling within the PCB contaminated soil grid. . Direction: Facing Southwest.

Photograph 9: Collecting dust samples from the concrete slab within DU-7. Direction: Facing Northwest.

Photograph 10: Collecting dust samples from the concrete slab within DU-4. Direction: Facing West-Northwest.

Appendix B Project Field Notes

(on tacts CONTENTS 5.7. PAGE REFERENCE DAIF 635-3740 349-2506 TA Tedart. 124771986 www.carrollcox.com 808-782-6627 Rete in the Main

7-28.08 0745- MN, AL, EL Arman @ housing R.M. Towill - proceed to tome station site - wait for surajors to establish Two pte Proceed to former use of facility site -0845 - Bejin cleaning SILAS Brin, est. Ground pts #1,#2 surface Brin at PCIBI grid Dr. Mead arrives www.carrollcox.com 808-782-6627

Y onste surface 12:00 (emp 1300 -1 collect surfin samples firm. -C-9 1500- Couplete PCB# HUS#2 pord . . also complete 1 sa ples samples. 1515 - leave site I day 62% www.carrollcox.com 808

Samples collected 7-28-07: - All surface - both pricks - 2' samples: 4'samples: S\$\$\$6 \$\$\$992 \$\$\$97 \$\$193 \$\$195 \$\$\$984 7-29.01

to petup and propers to petup and propers to allout subsurface grid supples

1100 - lunch - Dr. Mend arrives ensite 1500 - Circlete grid subsorfice scupling.

- All

- 1515 - Loave site for day

www.carrollcox.com 808-782-6627

PCB 1 Grid 7-30.01 1.... 0810. Arrive onsite (MN,EL,AL) Proceed to layout in I suph gich Ins. Collect stag discrest surface EI 1-1 01 -1 1120 - Cillert sild discreet surface Soil. 1. •) GPS units so deadstop to charge up, · ⊡ 0 1230 - Lunch 1730 - Co tive me lajout/ Suplin Legend: 17 - asphalt surface covery www.carrollcox.com 808-782-6627 Re. Ser.

7.30.09 Surpling Log: mI 5122 11:00 Discipit 11:15 5109 11:20 5119 2 Distreet -11:35 5121 mI mI 11:55 5120 wi 5126 mI mI 14:405174 mI -14:57 511 mI 15.15 5130 -14:00 5127 15:13 5116 MI M 15:30 5006 D'Se resmile PCB-1 --www.carrollcox.com 808-782-6627

1545 : leave sit ---Mar H -----www.carrollcox.com 808-782-6627

7-31-09 FL sient 08 MP. AL. ousite . sample collection -Lund - ZA arrive 1134 1210 - Continer MI -----www.carrollcox. com 808-782-6627

7-31-09 Seveling Log E. 0 5129 8:42 -9:15 SLII 9:19 5133 6-1 SIIZ 1:35 -9:42 5132 9:45 5118 9:53 5113 -10:05 5128 -10:15 5124 -10:31 5127 10:44 5115 -10:45 5125 5131 10:57 11:17 5119 1135 12:05 12: 15 5136 13:00 5137 -1330-Complete sampling. --1430- leave site for day www.carrollcox.com 808-782-6627 M

8-17-09 0900- RA, MN arm oneite - prepare To collect GW (...) saydes mw-2 water level : 11.7 Toc Date Dente : 19.0 Jeasing Vol : 1. 1 40 - 0935. Bejin Purging orus. Collect Gw Single 090010-M.11-WAGI Dur 1020 : Complete MW2 1 www.carrollcox.com 808-782-6627

mw-1

Water level: 7.9' Total Roth: 17.44" Water Column: 9.54 Casig Vol: 1.5 g 3 (1517 UN: 4.5+5 Purge Vol: 5.09

1040. Collecte Gw somple 090010 - Muli - W 443

1055 - le-plate mw-1

mw.3

water level : 9.3' Total Apr. 17.8' With Column: 8.5" Cavily Vol : 1.369

3 casing Vul: 4.08 K.p Vol : 59

136: Capete WWW3carro

1115 Collect GW Smple 090010-Maili waay

mw-4 Water Level: 10.7 To Total Depth: Water (ilvini Casing Unl: 3 (257, Ual : Puge Vol:

1.289 3.842 4.5 12:00: Collect Gu Saple 090010. Maili Nords 1220 - Kegin MW-5 Tok 1 Digh: 19.1 Toe Water Column : 11.1' ((Val: 1.77 Ching Vol: 5.3 10 71 Val: 5.59

18.7 8'

240: collect GW Sample cox. com 808-782-6627

Mw.5

Water Level: 10.9 Toc Tetal Jeph: 18.43 Water Column: 7.53 Casiz Unl: 1.2 Scasiz Unl: 3.6 Buge Unl: 4.5

1320 - Collect Gw Super orono-maili-word7

1345 - Leme site

8-18-09 OB45: MN, RA, DM Proceeds to layout grid Bain Suple collection 1030 PSY Arvive musite. 1330 Sample log Time) 1D 12 Time 740 1235 SMO 1155 5200 5205 5111 1150 1145 1245 5192 5201 5207 1240 1215 5193 Jdop 5208 5124 1246 connte 5195 1200 5209 5210 1155 1248 5 196 \$197 \$211 1210 1250 \$198 1140 5212 1135 5191 5213 1130 5200 5214 5215 5201 1220 1222 \$107 5216 5203 5217 1253 1230

www.carrollcox.com 808-782-6627

1

5

1.1

-

4 . m. 1

07%)				
			3	8/18/19
	Sample 15	> There	Sample 1D.	The
	5218	1310	5241	NA refail
	5219	1312	5247	1445
	\$270	1105	5 2 3	1202
	\$221	1338	SZAA	1343
20	\$222	1335	5245	1500
	\$223	1332	5244	1347
	5224	1330	5247	1174
	5275	1326	8248 300	1450 24"
8	STU YA	1315	5249	
	5227	7	\$25	1225
	\$178	1320	5251	1250
N. 572	\$ 229	same as \$717	3252	1305
	523	Same as \$218	5253	1350
	\$231	connete	5254	1311
	5732	epress 14E1	\$255	1315
	5735	1352	5257	1420
C C	5734	1357	5257	1311
(III)	\$ 735	connete	5255	1325
	5231	1537	\$259 Jdu	y concrete
	5137 5	due 1430 15"	\$260	1
	\$1 38	44	5241	1425
C	5219	13 44 15"	5262	1330
	5240	1445 15"	5263	1435
www.carrollcox.com	808-78	2-6627		

6~0		
()		8/25/29
E=0	0715: PA arrive on site	
8-9	17115: PES arrive insite	(Dushing
C	Justin), prop and unla	
	bethe	
E 3	HACU: Mob to berns	
	1515: Beain trenching soil	bernis an'
	provids.	
	George and the star	
	1105: Completed trenchin berry Inwords	~ sa
E=9	Bennes humands	-71
* •	12:00 1 PCS lord backhoe	dian 1
•	sik	10 cpara
	17:00- 17:45 Junch	
	12:45, Bogin sampling of the	nelis
	Sample 10 Time Sample 10	Ilm
# = 9	601 1305 BIZ	1400
	B.7 1310 BUS	1405
	B+3 1315 B01	1410
		phals 1415
C	BUS 1347 BU	1420
	800 700 CCO7	1425
www.carrollcox.com	000-102-0021	

	8/72/24
	1131 : Arrive on-sile
	1145: Begin bern Incord souphy
	B13 1300 B19 1255
	B14 1250 B20 1225
	BIS 1255 B21 1220
	BIL 1205 B22 veptical 1200 B12 1200 B23 veptical 1200
	B12 1246 B23 / 161 - 1216 B18 1305 B24 1215
	1330 - Pack samples, complete cre
	lare - Tepert sike to drop samples
	at TA Hrmshik
	P.
	1.5
C	Shely
www.carrollcox.com	808-182-6621

Transfor notes from plane 8/10/09 1.00 1915 Arvive onsite, Walley well Drillers on eile (Steve, Book) 0845 Meb to Must and setup 100 stant Brilling 1935 stop duilling at 20', push. C I plig , drop casing , add - soul to 2' abive some , and bentmite 1055 May & Mki-1 and set op 1115 Start duilling 1150 stop drilling at 21', push plug, drop casing, add sand to 2' above easing edd huntrute 1245 Breek for lovely 1345 plat to MILOB and setup 1400 start drilling 1445 stop drilling at 20', push plug, drop casing, add bendonite and & 2 deve casing) 155 Demols 1545 Dep- + siz www.carrollcox.com 808-782-6627

Transfer notes for theme 8/11/07 0815 Arvive ansite, PCS ensite 1 Steve, Boolal 1930 Hob to MW-4 and setup 1 1 0851 start drilling 09:15 Stop drilling at 20', push plug drop casing fill sand to 7' above server, add bentonite 0945 Mob to MWith and setup -1000 Shart drilling 1055 stop drilling at 20', push plug, drop casing, All sand to 2' above server. . and bentrik 1730 Break for lunch 1331 Mob h Nu-5 and schop 1400 stant Crilling 1475 ship drilling at Ze', push plug drop casing, add sand to -2' above Screen , add beefroke Demos, pick up augers 190 1545 Depart site www.carrollcox.com 808-782-6627

Transfer notes from inplum 8/12/09 1515 Arrive ensite, PCS ensite (Steve , Bale) , mus + 410-2 1846 Bigin development of Men. 2, Mob & MW.F 1900 1910 Begn duelopm tot MO.I. Mas most + ming began development of Mic.] 013C 1945 Mes to Alling 1951 Bugen development of Mind, porac 55 gallens. 1015 Meb & MIL.C 1025 Been derefront of Ming prove 5 gettens , pomp well 11 105 Mob to MIC.L E.1 ... DeLast down hars luckes in 1110 it. Boola capal site to get wer drum. Ills Break Go lunch www.carrollcox.com 808-782-6627

Rehrn to site 134 1310 Begins development of Miller, purae 55 gallons, 1330 Mob to Millers -1341 Continuerto develop mu-5 14ce - 1630 set Alash mountson all wells 1682 - Completed derefopment of MIN-S, purged SS gellous 1695 marshelled att downs --1731 Depart site Stall Bar www.carrollcox.com 808-782-6627

\$112/09

-				
()			9/	17/09
k=)	0745: A	rive an site	(PA RY)	
		ob to site,		
	2	rid.		•
	0830: 8	egin son	-ple calk	eton.
		Sample L	10	
-			2	
	5266	Time 1048	52817	Time
	5267	1045	5282	1150
	50-8	1042	5285	1140
	5267	1040	\$ 284	0925
	5270	0950	5285 528L	1155
	5272	0943	5487	1210
	5233	0435	5288	1205
	5274	(023	Sala	1630
	5276	1020	8289 5290	1630
	597	10 10	5291 >	1270
	5278	0940	5292	1225
t	SEA	0930	5293	1215
www.carrollcox.com	5280 808-782-	0927 -6627	5294	0125

F				
-				9/12/07
		0920		Time
	5295	0912	5312	1405
-	5297	0910	5314	1500
	5248 5299	09035	5315>	1555
	5300	08 58	5317	1515
-	5301	0855	5318	1640
e = •	5302	0900	5319 5320	1620
C	\$304	0850	5321	1715
	5305	1120	5322	(735
	330L 3307	1123	5323 5324 - 2'	1130
	>308	1035	5325	1335
	5309	0937	5326	refusal 2" 1235
	\$311	1420	5328	1240
		econ der	rob	Gnerete Albris
	-	Part Site	0	
www.carrollcox.com 8	308-782	$\left(\right)$	-he	

					123.2
		10 100			
MAILE PHASE		7/30/09			`
IMMUNOA	LY ANALYSIS			RUN #1 (CONT	
			_	GAMPLE 1D	RESULT
FUN #1				22	11.7256
GAMPLE ID	RESULT			23	0.08161
١	0.9784			24	0,1333
2	2.6441			25	0.0560
3	1.5905				
4	1.3689				
5	65.0835 Hi				
1	30.3591 Hi				
8	2.0098				
٩	1.0652		-		
10	37. 2722 Hi				
11	4.7884				
12	ND				
3	ND				
14	0.3226 ND				
15	0.0991 ND				
16	5.3385				
11	0.6179				
18	0.1864 ND				
19	0.7433				
20	2.8097				
21	13.0746 Hi				
	WW	w.carrollco	ox.com	808-782	-6627

1 #1 (CONT.) RESULT MPLE ID 11.7256 Hi 22 0.0816 ND 3 0,1333 ND + 5 0.0560 ND

W 54.	010,100			
	1/31/09		No /o . 19	- \
ANALYSIS			RUN #2 (CONT	.)
			SKMPLE 10	RESULT
RESULT			47	0.0541
53.4574 HI			48	0.0776
0.2371 ND			49	0.0328
18,9323 HI			50	0.0285
0.0580 ND			51	0.1926
2.3646			52	0.0818
0.2320 ND			53	ND
0.0513 ND			54	0.0223
0.0616 ND			55	ND
0.0881 ND			56	0.0348
9.1373			57	0.055
0.3246 ND			R	10.8458
0.0601 ND			59	0.011
0.4009 ND			60	6.425
0.0151 ND			61	0.0310
0.1109 ND			62	0.376
0.0465 ND		-		
0.2083 ND				
0.0402 ND				
0.1241 ND				
0.1360 ND				
WWW	.carrollco	x.com	808-782	-6627
	53.4574 HI 0.2371 ND 18.9323 HI 0.0580 ND 2.3646 0.2320 ND 0.0573 ND 0.0616 ND 0.0606 ND 0.0601 ND 0.0601 ND 0.4009 ND 0.0151 ND 0.12083 ND 0.0402 ND 0.1241 ND	RESULT 53.4574 HI 0.2371 ND 18.9323 HI 0.0580 ND 2.3646 0.2320 ND 0.0573 ND 0.0616 ND 0.0801 ND 9.1373 0.3246 ND 0.0601 ND 0.4009 ND 0.0151 ND 0.1109 ND 0.0151 ND 0.0165 ND 0.0465 ND 0.2083 ND 0.0402 ND 0.1241 ND 0.1340 ND	RESULT 53.4574 HI 0.2371 ND 18.9323 HI 0.0580 ND 2.3646 0.2320 ND 0.0573 ND 0.0616 ND 0.0881 ND 0.0881 ND 0.0616 ND 0.0601 ND 0.0601 ND 0.0151 ND 0.0151 ND 0.0465 ND 0.0465 ND 0.0402 ND 0.1241 ND 0.1372 ND	III ESA $7/31/09$ I ANALYSIS KUN H2 (CONT RESULT 47 53.45774 HI 48 0.2371 ND 49 IS.9323 HI 50 0.0580 ND 51 2.3646 52 0.0573 ND 53 0.0513 ND 54 0.0616 ND 56 0.324c ND 59 0.4009 ND 59 0.0601 ND 59 0.0465 ND 62 0.2083 ND 63 0.2083 ND 64 0.1241 ND 64

1/31/09

0.0223 ND

0.0348 ND 0.0552 ND 10.8458 Hi 0.0117 ND 6.4257 0.0310 ND 0.3765 ND

0.0541 ND 0.0776 ND 0.0328 ND 0.0285 ND 0.1926 ND 0.0818 ND

/				44 :	
MAILI PHESE	II EA	1/31/09			
IMMUNDASSA	1 ANALYSIS			RUN #2 (CONT	.)
RUN #2				SAMPLE 1D	RESULT
GAMPLE ID	RESULT			47	0.0547 ND
26	53.4574 HI			48	0.0776 ND
21	0.2371 ND			49	0.0328 ND
28	18,9323 HI			50	0.0285 ND
29	0.0580 ND			51	0.1926 ND
30	2.3646			52	0.0818 ND
31	0.2320 ND			53	HD
32	0.0573 ND			54	0.0223 ND
34	0.0616 ND			55	ИD
35	0.0891 ND			56	0.0348 ND
36	9.1373			51	0.0552 ND
37	0.3246 ND			F	10.8458 Hi
38	0.0601 ND			59	0.0117 ND
39	0.4009 ND			60	6.4257
40	0.0151 ND			61	0.0310 ND
41	0.1109 ND			62	0.3765 ND
42	0.0465 ND				
43	0.2083 ND				
44	0.0402 ND				
45	0.1241 ND				
46	0.1360 NO				~~~
	WWW.	carrollcox	x.com	808-782	-6627

1/31/09

, ₁

		7/31/09			
RUN #3				RUN #3 (CON	.t.)
GAMPLE ID	REGULT			SAMPLE ID	
63	1.9997			86	0.0561 ND
64	0.0326 ND			88	0.0513 ND
65	0.0004 ND			89	0.1320 ND
66	ND			90	0.0856 ND
67	ND			91	0.2109 ND
68	ND			92	0.0482 ND
69	0.0036 ND			93	0.1668 ND
10	0.0290 ND			94	0.1735 ND
71	ND			95	0.5125
12	ND			96	0.5774
13	0.2416 HD			97	0.3224 ND
74	0.2487 ND		C	98	0.1927 ND
15	0. 6759			99	0.1836 ND
16	0.3445 ND		-	100	0.2815 ND
17	0.0839 ND				
18	0.1825 ND				
79	0.1146 ND				
80	5.4417				
81	0.1917 ND				
82	0.6132				
84	0.1136 ND				
85	0.1310 HD				
	WWV	v.carrollco	com 8	308-782-6	627

7/31/09

	7/31/09
RUN #4	
GAMPLE ID	RESULT
101	0.0941 ND
102	0.0841 ND
103	0.0576 ND
104	ЧD
105	0.0544 ND
106	ЧD
107	ИD
108	ИЛ
109	0.0036 ND
110	0.0831 ND
6	15.0922 HI
63	2.1276
15	Q.2212ND 0.5893
76	0.2212 ND
80	3.7285
8 2	0.5423
95	0.0003 ND
96	0.0794 ND
97	0.0243 ND

MAILI PHASE II ESA RUN#5

GAMPLE ID	RESULT
138	1.4422
140	11.5876 Hi
141	4.4381
142	42.7492 H,
143	47.7084 Hi
144	46 1953 Hi
145	31.0870 Hi
146	6.2891
147	11.2660 H.
148	2,4752
149	28.5470 Hi
151	38.2655 Hi
52	17. 7334 Hi
153	2.26
154	0.4821 ND
155	1.2279
156	0.8375
157	8.3222
158	0.5756
159	53.5471 Hi
160	1.9838

-----www.carrollcox.com 808-782-6627

8/6/09

PUN #5 (CONT.)

SAMPLE ID RESULT 162 0.0311 ND 6.6092 163 21.3848 Hi 164

8/6/09

RUN #6	8/6/09		RUN A6	
SAMPLE 1D	RESULT		SAMPLE ID	RESULT
165	0.9063		187	ND
166	0.8290		188	0.0280 ND
167	1.5063		189	HD
168	0.6444			
169	2.4202			
170	23.5071 Hi			0.00
171	2.4131			
172	2.0111			
174	2.5021			
175	0.0633 ND			
176	1.3417			
177	1.1536			
178	0.3540 ND			
179	0.2259 ND			
180	ND			
181	0,1715 ND			
182	0.1561 ND			
183	0.0421 ND			
184	0.0715 ND			
185	2.0060			
186	0.0552 ND			_
	www.carrollcox	COM	808-782-662	27

8/6/09

			-		
		8-19-09		Kun #7 cont'	8-19-09
Ru ~ #7					2. 14 17
1	0			Saryh I D	Resort Rown
SampleID	Result	Rekun		217	4.0479
¥190	0.5660	0.5748		218	0.5580
191	0.6529			7 219	8.0955 7.6026
192	0.6049		-	220	38. 87 47 14
193	3. (147 75)		221	0.1784 nd
194	2.7018).		222	9.4227 nd
195	3.882.6			223	0.8147
196	2-8581			¥224	1. 4179 0.6631
197	3.9216			225	2.8624
198	2.0979		-	226	30.8509 H.
199	2.9737			227	31,12.03 H.
200	0.8710			228	1.2.75
7 201	2.4087	2.0480		232	26.0772 Hi
202	0.5644			233	0.2801 ~1
203	12.3036 41			234	0.8318
204	0.4296 nd -	>			
205	0.4902 nd				
206	0.2784 nd				
207	1.8025			Note: * _ Seuple	Re Run
2*8	3.8753			¢	
210	80. 4 582 Hi				
211	715.4				
	www.car	rollcox	com	808-782-6627	
	1941 - 1984 - 17 4, 12 - 1886 - 1886 - 1886 - 1886 - 1886 - 1886 - 1886 - 1886 - 1886 - 1886 - 1886 - 1886 - 1				

•		
lun	#	8
~		

Sample 1D	Result
236	1.2461
237	3.4448
239	3.4724
240	1.6725
242	ND
243	0.1440 ND
244	0.0993 ND
245	0.0064 ND
246	1.0260
247	17.1746 Hi
148	4.4940
250	0.0515 ND
251	0.0299 ND
252	0.0458 ND
253	0.0563 ND
254	1.6759
155	49.8921 Hi
256	46.0430 Hi
157	1.0953
258	ND

0.3594

sliglog

-

-

-

-

-

www.carrollcox.com 808-782-6627

Run #8 (cont)

262

263

264

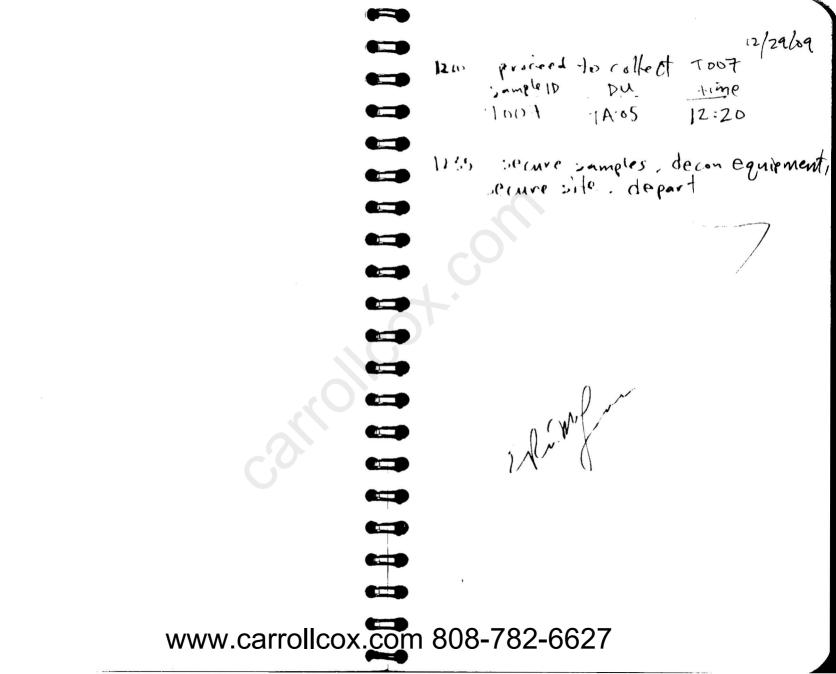
US 190

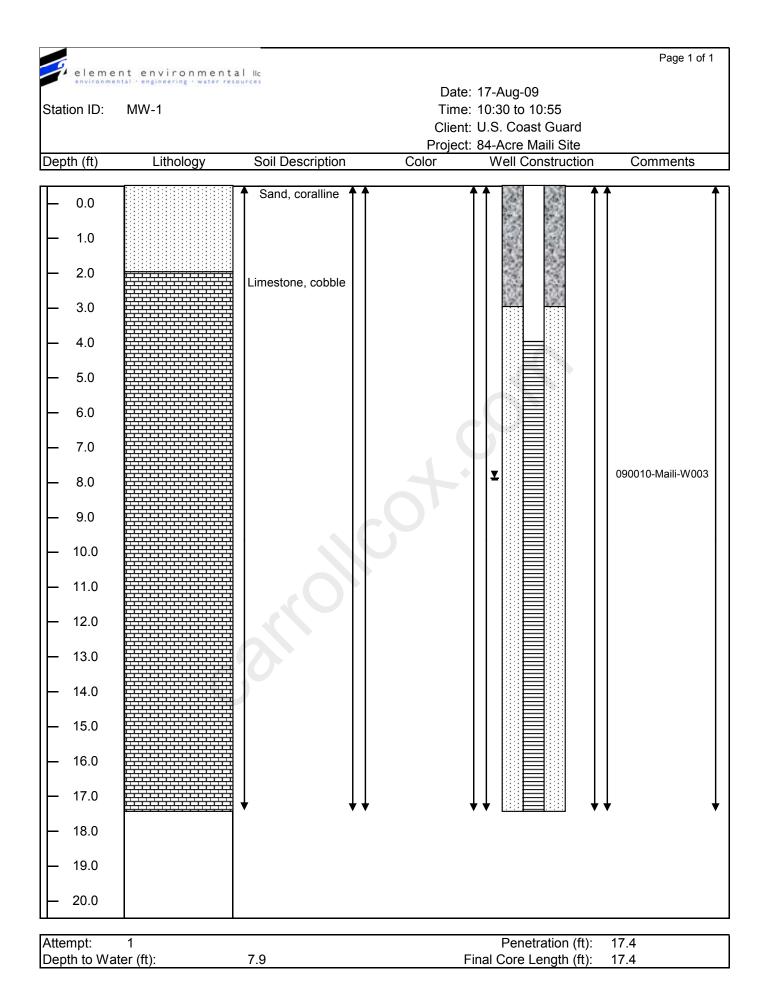
201

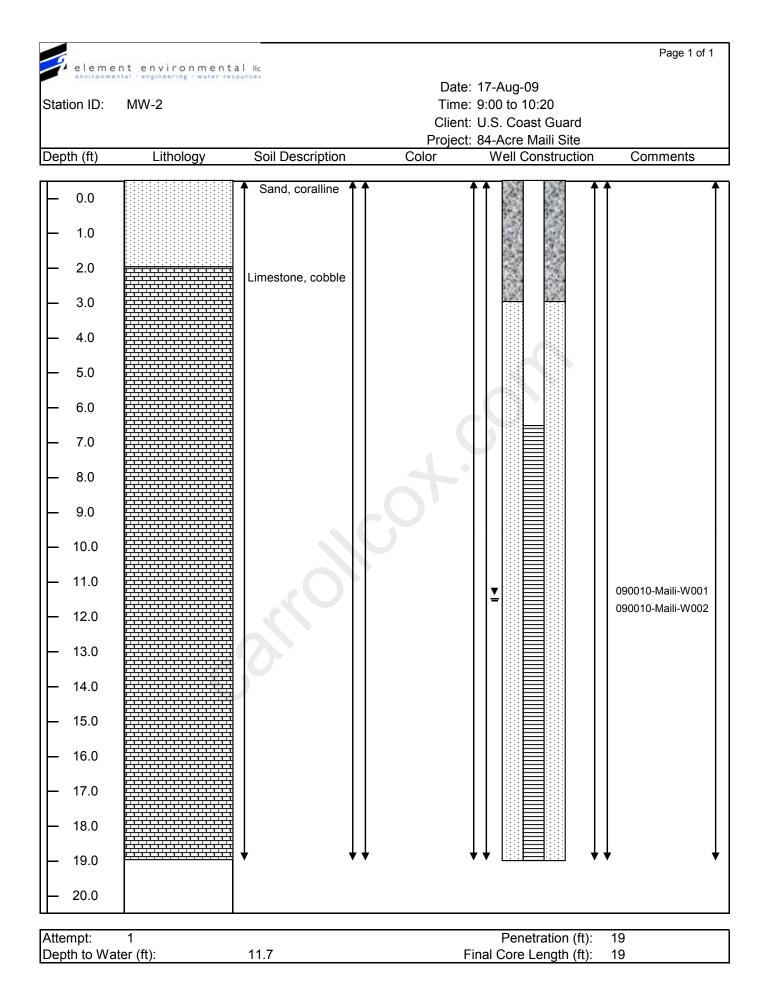
219

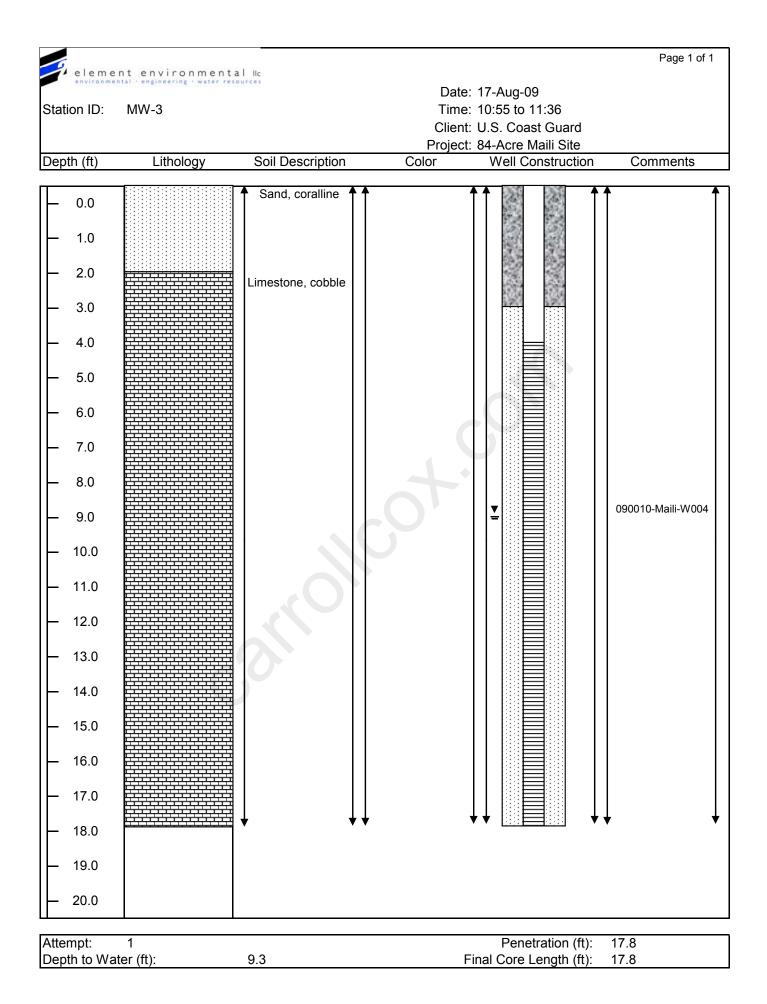
224

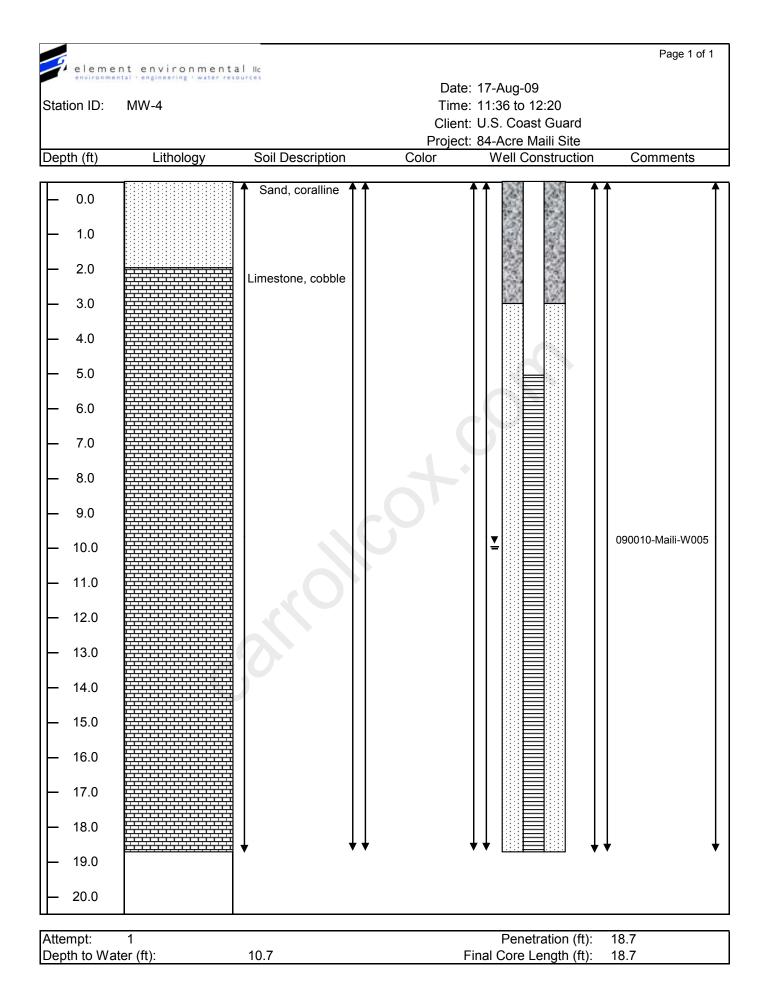
Sample 10 Result 0.7881 0.2797 ND 0.5226 0.4535 ND 0.5748 2.0480 1.6026 0.6631

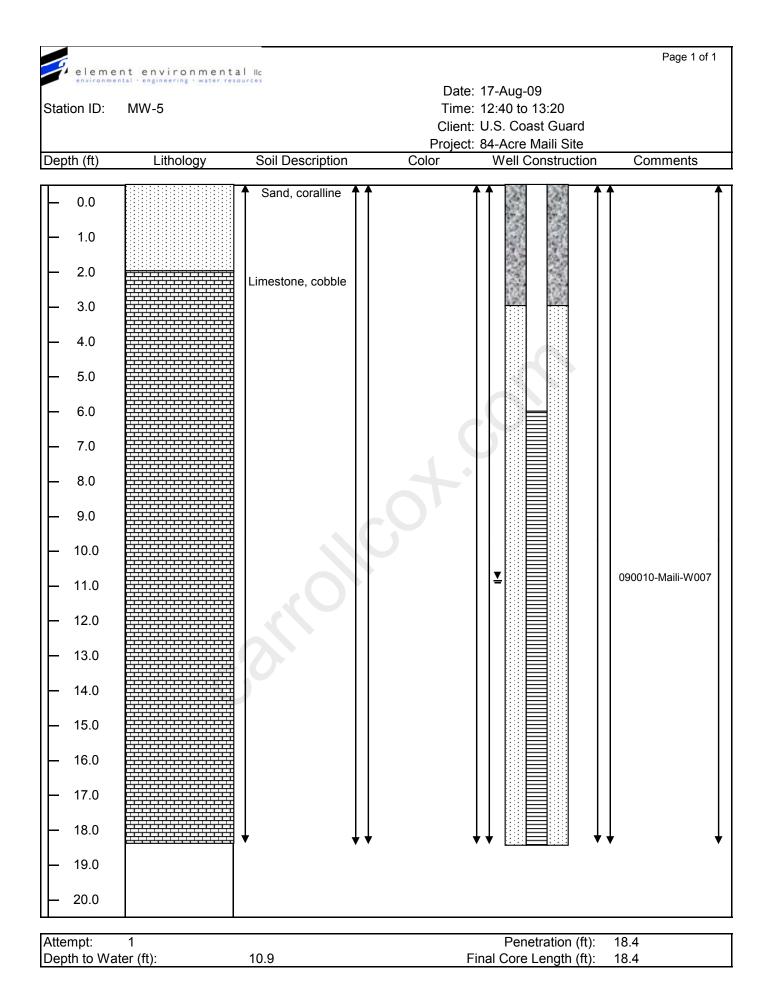


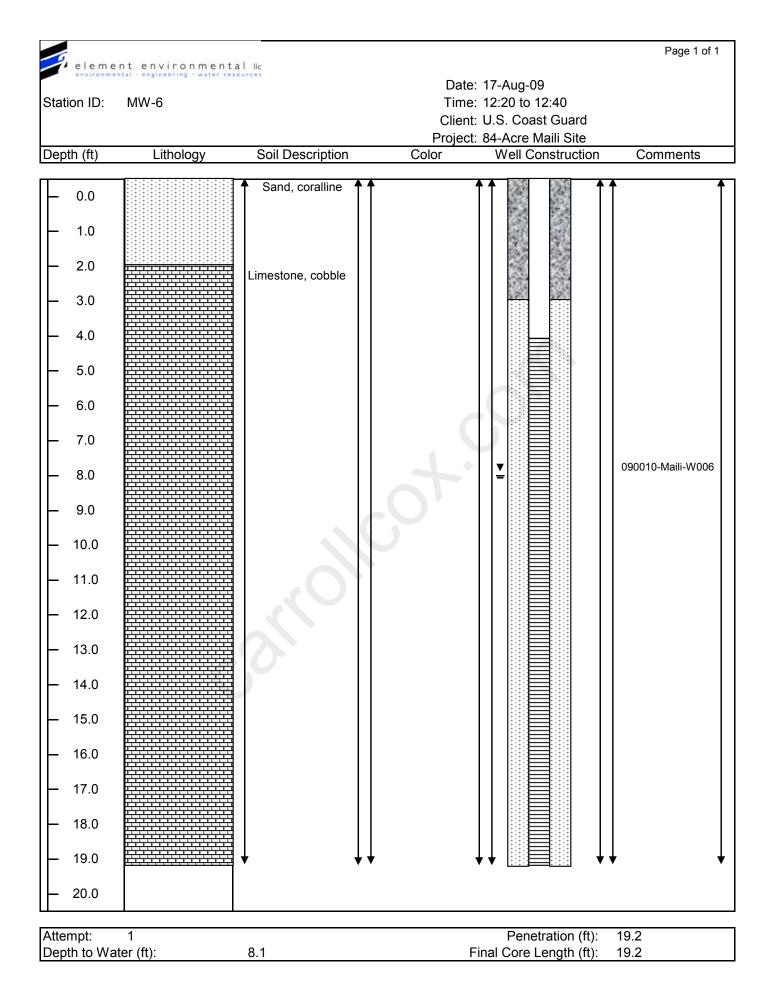

261

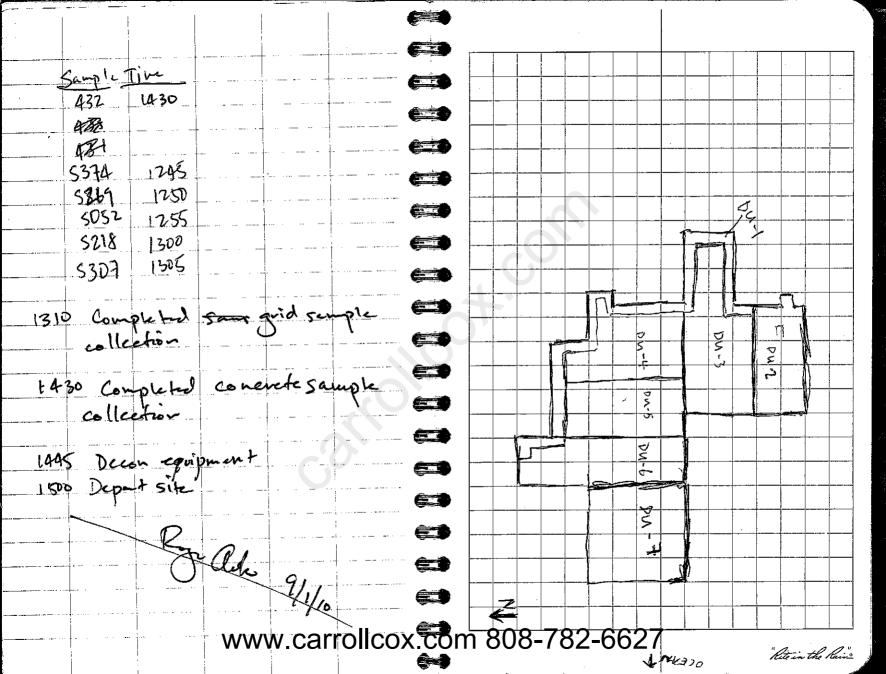

MAILI PHASE II ESA RUN #9	۹/۱	19/09	RUN # 9 (CONT.)	
GAMPLE 1D	RESULT		GAMPLE ID	RESULT
266	0.4665 ND		287	8.2666
267	0.4603 ND		288	0.5416
268	1.6351		289	0.1595 ND
269	1.5745		290	0.3439 ND
270	3.5701		291	0.1114 ND
271	0.7968		292	0.2506 ND
272	0.1224 ND		293	5.8494
273	0.2953 ND		294	0.1033 ND
274	2.0529		295	25.3128 HI
275	0.8923		296	0.0932 ND
276	1.3826		297	0.1041 ND
277	2.9854		298	0.5336
278	1.0317			
279	0.5498			
280	0.1625 ND			
281	0.0951 ND			
282	0.2277 ND			
283	0.3547 ND			
284	0.7928			
265	0.1918 ND			
286	1.2087			
	www.carroll	cox.com 8	808-782-6627	


MAILI PHASE ILESA		9/19/09			
RVN #10				RUNHID (LONT.)	
SAMPLE 1D	RESULT			SAMPLE ID	
299	0.4991 ND			320	
300	0.8597			321	
301	3.3954			322	
302	8.0667			323	
303	0.0420 ND			324	
304	0.0982 ND	¥.		35	
305	1.3598			327	
306	1.5440			328	
307	0.1654 ND				
348	0.0287 ND				
309	ND				
310	ND				
311	0.0137 ND				
312	0.1164 ND				
313	0.0725 ND				
314	0.1162 ND				
315	0.0661 ND				
316	0.0539 ND				
317	0.1851 ND				
318	0.0278 ND				
319	D C C C C C C C C C C C C C C C C C C C				_
	www.ca	rrollcox	.com	808-782-6627	


RESULT	
0.0056	ND
0.3554	ND
0.3033	ND
0.0394	ND
0.2766	ИD
0.0329	ND
0.2052	ND
0.6511	






			_									<u> </u>	1
093	0	A	ai	v 2	at	-)	1a.	()	Sĩ	le			
		RA	- , Ę	<u>l.</u>		200	cee	1	to.	de	2 000	7	
	<u>e</u>	29 ₁ 4)	, pn	el	+ 2	4	09		.t	Ça;)م بد	a	
		0(4	ħ.	bug	5.						<u> </u>		
		pro	œ	l	+	Lol	let	9	<u>\$50</u>	ve	Ł		
	5	an	. <i>q</i> L	25		53	29	4	44.	ıдh	5	38	6
							. 						
- Se	mpl	e_		\Box	me	.		84		Le_		1	1
				<u>-</u>									
	329			113					34	T .			29
	50	–		113					34	1			00
	31			<u>1</u> 13					345				20
	32			113					341				a
	33			113					34-			-	0
	34			110					34	1		12	
	35		<u> </u>	114					34	•		12	
	36			110	ł	<u> </u>			35		<u> </u>	-	-12
	37			14					35				210
53	1			1	48				935 826	l.		-	
<u>533</u>					9				535	1	 		24
53	40 11				52				335				2
ءء 308				11 1 56	54				35	56			25

www.carrollcox.com 80

"Rite in the Rein"

				5/27/10
	Sangle	Time		<u>Time</u>
	5357	1226	<u>\$372</u>	1252
	\$358	1228	\$373	1255
	5359	(2)0	5371-	1300
	5360	1232	\$375	1302
	5364 5364	1932	5372 5377	1364
	5363	1238	5378	308
	5364	1240	5371	1316
	5345	1242	5380	1312
	5361	244	5381	1312
	5367	1240	5382	1316
	<u> </u>	1248	\$383	1318
	3319	1250	5380	1320
	5370	1252	5385	1324
	0571			
	\$387	Le. E M	l Sangle	1330
	1400 seu	ive sample	s & depar	+ site.
		51/		
www.carrollcox.com	808-782	-6627		"hite in the hain"

pathy cloudy, - 85°F	(***)	· · · · · · · ·			
	9/10	** *** *#		6	7/1/10
					<u> </u>
0900 prive on site		Samo	le Tire	Sample	tim
0915 Larest DUS By co	novete pad E	388	1334	410	1150
Layest grid extensi		389	136	<u> </u>	NS
GPS att features		390	238	412	1205
		391	1240	413	1232
140 Beain collection Sam	ples 💭	392	1207	414	NS
140 Begin collecting Sam		393	1209	415	1231
		394	1210	416	1230
		395	1213	417	1229
· · · · · · · · · · · · · · · · · · ·		396	1212	418	278
		397	1215	419	1227
		398	1216	470	1228
		399	1218	421	1225
		400	1219	422	1226
		401	1220	423	1224
		102	NS	474	1223 .
		403	1217	475	1221
		400	1200	476	1222
		405	1202	427	1200
		406	1157	428	1230
		407	1155	429	1300
		408	145	430	1330
		409	NS	431	1400
www	.carrollcox.com	808-78	2-6627		"Rite in the Rain"

Appendix C Sample Analytical Results Summary Tables

Table C-1: PCB Grid Sample Results

Immunoassay Analysis Results

Sample ID	Sample Depth (feet)	Result (ppm)	Qualifier	Run #	Sample ID	Sample Depth (feet)	Result (ppm)	Qualifier	Run #	Sample ID	Sample Depth (feet)	Result (ppm)	Qualifier	Run #	Sample ID	Sample Depth (feet)	Result (ppm)
1	0	0.98		1	49	0	0.03	ND	2	93	2	0.17	ND	3 3	167	0	1.51
2	0	2.64		1	50	0	0.03	ND	2	94	4	0.17	ND		168	0	0.64
3	0	1.59		1	51	0	0.19	ND	2	95	2	0.51		3	169	0	2.42
4	0	1.37	1.1:	1	52	0	0.08	ND	2	95	2	0.00	ND	4	170	0	23.51
5	0 0	65.08 15.09	Hi Hi	4	53 54	0	ND 0.02	ND	2	96 96	4	0.58 0.08	ND	3 4	171 172	0 0	2.41 2.01
7	0	30.36	Hi	4	55	2 4	0.02 ND		2	90	2	0.08 0.32	ND	3	172	4	2.50
	0	2.01		1	56	2	0.03	ND	2	97	2	0.02	ND	4	175	2	0.63
9	Ũ	1.07		1	57	2	0.06	ND	2	98	4	0.19	ND	3	176	4	1.34
10	0	37.27	Hi	1	58	4	10.85	Hi	2	99	2	0.18	ND	3	177	4	1.15
11	0	4.79		1	59	2	0.01	ND	2	100	4	0.28	ND	3	178	2	0.35
12	0	ND		1	60	4	6.43		2	101	4	0.09	ND	4	179	4	0.23
13	0	ND		1	61	2	0.03	ND	2	102	2	0.08	ND	4	180	4	ND
14	0	0.32	ND	1	62	4	0.38	ND	2	103	4	0.06	ND	4	181	4	0.17
15 16	0	0.10 5.34	ND	1	63 63	2	2.00 2.13	J	3 4	<u> </u>	2	ND 0.05	ND	4	182 183	2 2	0.16 0.04
17	0	0.62		1	64	<u>∠</u> 4	0.03	ND	4 3	105	4	0.05 ND		4	184	<u> </u>	0.04
18	0	0.19	ND	1	65		0.00	ND	3	100	4	ND		4	185		2.01
19	0	0.74		1	66	2	ND		3	108	2	ND		4	186	2 2	0.06
20	0	2.81		1	67	2	ND		3	109	0	0.00	ND	4	187	4	ND
21	0	13.07	Hi	1	68	2	ND		3	110	0	0.08	ND	4	188	4	0.03
22	0	11.73	Hi	1	69	4	0.00	ND	3	138	0	1.44		5	189	4	ND
23	0	0.08	ND	1	70	2	0.03	ND	3	140	0	11.59	Hi	5 5	190	0	0.57
24	0	0.13	ND	1	71	4	ND		3	141	0	4.44			190	0	0.57
25	0	0.06	ND	1	72	2	ND		3	142	0	42.75	Hi	5	191	0	0.65
26 27	0 0	53.46 0.24	Hi ND	2 2	73 74	4	0.24 0.25	ND ND	3	143 144	0	47.71 46.80	Hi Hi	5 5	192 193	0 0	0.60 3.66
28	0	18.93	Hi	2	74	4	0.25	J	3 3	144	0	40.00 31.09	Hi	5	193	0	2.70
20	0	0.06	ND	2	75	4	0.59	5	4	145	0	6.29	1 11	5	194	0	3.88
30	0	2.36		2	76	2	0.34	ND	3	147	0	11.27	Hi	5	196	0	2.86
31	0	0.23	ND	2	76	2	0.22	ND	4	148	0	2.48		5	197	0	3.92
32	0	0.06	ND	2	77	4	0.08	ND	3	149	0	28.55	Hi	5	198	0	2.10
34	0	0.06	ND	2	78	2	0.18	ND	3	151	0	38.27	Hi	5	199	0	2.97
35	0	0.09	ND	2	79	2	0.11	ND	3	152	0	17.73	Hi	5	200	0	0.87
36	0	9.14		2	80	4	5.44	J	3	153	0	2.26		5	201	0	2.41
37	0	0.32	ND	2	80	4	3.73		4	154	0	0.48	ND	5	201	0	2.05
38	0	0.06	ND	2	81	2	0.19	ND	3	155	0	1.23		5	202	0	0.56
39 40	0	0.40 0.02	ND ND	2	82 82	2	0.61 0.54	J	3	<u>156</u> 157	0	0.84 8.32		5 5	203 204	0 0	12.30 0.43
40	0	0.02	ND		84	2	0.54	ND	4 3	157	0	0.52			204	0	0.43
41	0	0.05	ND	2 2	85	4	0.11	ND	3	159	0	53.55	Hi	5 5	205	0	0.49
43	0	0.21	ND	2	86	2	0.06	ND	3	160	0	1.98		5	207	0	1.80
44	0	0.04	ND	2	88	2	0.05	ND	3	162	0	0.31	ND	5	208	0	3.88
45	0	0.12	ND	2	89	4	0.13	ND	3	163	0	6.61		5	210	0	80.46
46	0	0.14	ND	2	90	4	0.09	ND	3	164	0	21.38	Hi	5	211	0	3.65
47	0	0.05	ND	2	91	2	0.21	ND	3	165	0	0.91		6	217	0	4.05
48	0	0.08	ND	2	92	4	0.05	ND	3	166	0	0.83		6	218	0	0.56

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL

Hi = concentration exceeds the calibrated range of RaPID Assay Kit

ND = Not detected

J = Concentration reported between Method Detection Limit and Reporting Limit

	Qualifier	Run #
		6
		6
•		6
•	Hi	6
•		6
•		6
•		6
•		
•	ND	6 6
		6
	ND	6
	ND	6
1		6
•	ND	6
•	ND ND ND ND	6
•		
•		6
	ND	6
		6
	ND	6
		6
•	ND	6
•		6
•		6 7
•		
•		8
		<u>/</u>
		/
		7
		7
		7
1		7 7 7 7 7 7 7
1		7
•		7
•		<i>:</i> 7
•		7 7 7 7 7 7
•		/
•		
		8
		7
	Hi	7 7 7 7
j	ND	7
1	ND	7
1	ND ND ND	, 7 7
•		7
•		, 7
•	LI:	7 7 7 7 7 7 7
-	Hi	/
-		/
		7
		7

Table C-1: PCB Grid Sample Results (cont.)

Immunoassay Analysis Results

Sample ID	Sample Depth (feet)	Result (ppm)	Qualifier	Run #	Sample ID	Sample Depth (feet)	Result (ppm)	Qualifier	Run #
219	0	8.10		7	273	0	0.26	ND	9
219	0	7.60		8	274	0	2.05		9
220	0	38.87	Hi	8 7	275	0	0.89		9
221	0	0.18	ND	7	276	0	1.38		9
222	0	0.42	ND	7	277	0 0	2.99		9 9
223	0	0.81		7	278	0	1.03		9
224	0	1.42		7	279	0	0.55		9
224	0	0.66		8	280	0	0.16	ND	9
224 225	0	2.86		7	281	0	0.10	ND	9
226	0	30.85	Hi	7	282	0	0.23	ND	9
227	0	31.12	Hi	7	283	0	0.35	ND	9
228	0	1.21		7	284	0 0	0.79		9
232	0	26.08	Hi	7	285	0	0.19	ND	9
233	0	0.28	ND	7 7	286	Ö	1.21		9
234	0	0.83		7	287	0	8.27	·	9
236	2	1.25		8	288	0	0.54	·	9 9
237	4	3.44		8	289	Ö	0.16	ND	9
239	2	3.47		8	290	Ő	0.34	ND	9
240	4	1.67		8	291	Ö	0.11	ND	9
242	4	ND		8	291 292	0	0.25	ND	9
243	2	0.14	ND	8	293	0	5.85	112	9
244	2	0.10	ND	8	294	0	0.10	ND	9
245	4	0.01	ND	8	295	0	25.31	Hi	9
246			112	8		0	0.09	ND	<u>q</u>
246	2	1.03 17.17	Hi	8	296 297	ŬŬ	0.00	ND	9
247 248	2	4.49		<u>8</u>	201	0 0	0.10 0.53		9 9
248 250	2	0.05	ND		298 299		0.50	ND	10
250	4	0.03	ND	8	300	0	0.30		10
252		0.05	ND	8	301	0	3.40	· • · · · · · · · · · · · · · · · · · ·	10
252	2 4	0.05	ND	8	301	0	8.07	· [· · · · · · ·]·	
251	4	1.68		8	303	0	0.04	ND	10 10
254 255	2 2	49.89	Hi	8 8	303	0 0	0.04	ND	<u>10</u> 10
255 256	<u>ک</u>	49.09	Hi		305		1.36		10
250 257	4	<u>46.04</u> 1.10		8		0		•••••••••••••••••••••••••••••••••••••••	10
257	2	ND		8	306 307	0	1.54 0.17	ND	<u>10</u> 10
258 261	4	0.36		8 8	202	0 4	0.17	ND	
262	+ 1			о 8	308 309	4	0.03 ND		10 10
202	4	0.79	ND	о 8	210	Z4	ND ND	·	10
263		0.28 0.52			<u>310</u> 311		0.01	ND	
264	2			8		2			10
265	2	0.45	ND	8	312	4	0.12	ND	10
266	0	0.47	ND	9	313	4	0.07	ND	10
267	0	0.46	ND	9	314	4	0.12 0.07	ND	10
268 269	0 0	<u>1.64</u> 1.57		9	315	4	0.07	ND ND	<u>10</u> 10
				9	316				
270	0	3.57		9	317	2	0.19	ND	10
271	0	0.80		9	318	2	0.03	ND	10
272	0	0.12	ND	9	319	4	ND		10

Sample ID	Sample Depth (feet)	Result (ppm)	Qualifier	Run #
320	4	0.01	ND	10
321	2	0.36	ND	10
322	2	0.30	ND	10
323	2	0.04	ND	10
324	4	0.28	ND	10
325	4	0.03	ND	10
327	2	0.21	ND	10
328	2	0.65		10

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL

Hi = concentration exceeds the calibrated range of RaPID Assay Kit

ND = Not detected

J = Concentration reported between Method Detection Limit and Reporting Limit

www.carrollcox.com 808-782-6627

Table C-2: Initial Transmitter Buildings Area MI Sample Results Soil Sample Analytical Results Summary

				Sample	ID (MI Soil S	amples)					
		DU TC - S135	5		DU TC - S136	3		DU TC - S137	,		
	(P	rimary Samp	le)	(Re	eplicate Sam	ple)	(Re	eplicate Sam	ole)		
			Method			Method			Method	Regulatory	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 8082)										
PCB - 1016	ND	0.0033	0.0011	ND	0.0032	0.0010	ND	0.0033	0.0011	3.9	1.1
PCB - 1221	ND	0.0033	0.0026	ND	0.0032	0.0026	ND	0.0033	0.0026	0.14	1.1
PCB - 1232	ND	0.0033	0.0023	ND	0.0032	0.0022	ND	0.0033	0.0023	0.14	1.1
PCB - 1242	ND	0.0033	0.00069	ND	0.0032	0.00067	ND	0.0033	0.00069	0.22	1.1
PCB - 1248	ND	0.0033	0.00043	ND	0.0032	0.00042	ND	0.0033	0.00043	0.22	1.1
PCB - 1254	ND	0.0033	0.00069	ND	0.0032	0.00067	ND	0.0033	0.00069	0.22	1.1
PCB - 1260	5.4	0.33	0.099	15	0.32	0.096	1.8	0.033	0.0099	0.22	1.1
RCRA Metals (EPA 6010B)	/7471A)										
Arsenic	9.0	5.8	0.25	11	6.0	0.26	9.9	5.6	0.24	0.39	0.43
Lead	110	2.9	0.23	54	3.0	0.24	1900	2.8	0.22	400	400
Barium	140	0.97	0.029	94	0.99	0.030	190	0.94	0.028	15000	3100
Cadmium	0.37	0.97	0.15	1.1	0.99	0.16	0.90	0.94	0.15	70	14
Chromium	110	2.5	0.091	110	2.6	0.093	120	2.4	0.088	280	500
Selenium	0.88	9.7	0.23	1.4	9.9	0.24	1.1	9.4	0.22	390	78
Silver	ND	1.9	0.087	ND	2.0	0.089	ND	1.9	0.084	390	78
Mercury	ND	0.018	0.0057	0.0073	0.019	0.0059	ND	0.019	0.0061	5.6	4.7
Total Petroleum Hydrocar	bons (EPA 8	015M)									
GRO	2.5	8.6	1.4	2.3	7.2	1.2	1.8	6.7	1.1	NS	600
DRO	6.5	8.3	1.5	18	8.2	1.4	6.4	8.2	1.4	NS	500
RRO	25	17	4.6	92	16	4.6	40	16	4.6	NS	2300

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL

Italics values are estimated as the analyte was detected below the reporting limit but above the method detection limit.

ND = Not detected

NS = No Standard

Table C-3: Follow-Up Transmitter Buildings Area Decision Unit MI Sample Results Soil Sample Analytical Results Summary

				Sample	ID (MI Soil S	amples)]	
	C	DU TA-1 - T00)1		DU TA-1 - T00	2	[DU TA-1 - T00	3		
	(P	rimary Samp	le)	(Re	eplicate Sam	ole)	(Re	plicate Sam	ple)		
			Method			Method			Method	Regulatory	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 8082)	PA 8082)									
PCB - 1016	ND	0.0032	0.00099	ND	0.0031	0.00098	ND	0.0032	0.00097	3.9	1.1
PCB - 1221	ND	0.0032	0.0025	ND	0.0031	0.0025	ND	0.0032	0.0024	0.14	1.1
PCB - 1232	ND	0.0032	0.0022	ND	0.0031	0.0021	ND	0.0032	0.0021	0.14	1.1
PCB - 1242	ND	0.0032	0.00065	ND	0.0031	0.00064	ND	0.0032	0.00064	0.22	1.1
PCB - 1248	ND	0.0032	0.00040	ND	0.0031	0.00040	ND	0.0032	0.00039	0.22	1.1
PCB - 1254	ND	0.0032	0.00065	ND	0.0031	0.00064	ND	0.0032	0.00064	0.22	1.1
PCB - 1260	0.50	0.0032	0.0046	0.71	0.0031	0.0046	0.64	0.0032	0.0045	0.22	1.1
Lead (EPA 6010B)											
Lead	15	14	1.1	130	14	1.1	97	13	1.1	400	400
Leau	10	14	1.1	130	14	1.1	ΞI	13	1.1	400	400

				Sample	ID (MI Soil S	amples)					
	0	OU TA-2 - T00	4]	DU TA-3- T00	5	C	DU TA-4 - T00	6		
	(P	rimary Samp	le)	(P	rimary Samp	le)	(P	rimary Samp	le)		
			Method			Method			Method	Regulatory	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 8082)	PA 8082)									
PCB - 1016	ND	0.0033	0.0010	ND	0.0033	0.00098	ND	0.0033	0.00095	3.9	1.1
PCB - 1221	ND	0.0033	0.0025	ND	0.0033	0.0024	ND	0.0033	0.0024	0.14	1.1
PCB - 1232	ND	0.0033	0.0022	ND	0.0033	0.0021	ND	0.0033	0.0021	0.14	1.1
PCB - 1242	ND	0.0033	0.00066	ND	0.0033	0.00064	ND	0.0033	0.00062	0.22	1.1
PCB - 1248	ND	0.0033	0.00041	ND	0.0033	0.00040	ND	0.0033	0.00038	0.22	1.1
PCB - 1254	ND	0.0033	0.00066	ND	0.0033	0.00064	ND	0.0033	0.00062	0.22	1.1
PCB - 1260	0.060	0.0033	0.00094	0.49	0.0033	0.0046	0.097	0.0033	0.00089	0.22	1.1
Lead (EPA 6010B)		•									
Lead	41	14	1.2	59	14	1.1	16	13	1.2	400	400

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL

Italics values are estimated as the analyte was detected below the reporting limit but above the method detection limit.

ND = Not detected

 Table C-3: Follow-Up Transmitter Buildings Area Decision Unit MI Sample Results (cont.)

 Soil Sample Analytical Results Summary

	Sample	ID (MI Soil S	amples)						
	D	OU TA-5 - T00	7						
	(P	rimary Samp	le)						
			Method	Regulator	y Standard				
	Sample	Reporting	Detection	EPA	HDOH				
	Result	Limit	Limit	RSL	EAL				
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)					
Polychlorinated Biphenyls	chlorinated Biphenyls (EPA 8082)								
PCB - 1016	ND	0.0033	0.00098	3.9	1.1				
PCB - 1221	ND	0.0033	0.0024	0.14	1.1				
PCB - 1232	ND	0.0033	0.0021	0.14	1.1				
PCB - 1242	ND	0.0033	0.00064	0.22	1.1				
PCB - 1248	ND	0.0033	0.0004	0.22	1.1				
PCB - 1254	ND	0.0033	0.00064	0.22	1.1				
PCB - 1260	2.6	0.0033	0.0092	0.22	1.1				
Lead (EPA 6010B)									
Lead	71	14	1.1	400	400				

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

Corre

				Sample ID (MI Soil Samples)							
		DU 1 - S111			DU 1 - S112			DU 1 - S113		1	
	(P	rimary Samp	le)	(Re	eplicate Sam	ole)	(Re	eplicate Sam	ole)		
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	6 (EPA 8082)										
PCB - 1016	ND	0.0033	0.0011	ND	0.0033	0.0011	ND	0.0033	0.0011	3.9	1.1
PCB - 1221	ND	0.0033	0.0027	ND	0.0033	0.0026	ND	0.0033	0.0027	0.17	1.1
PCB - 1232	ND	0.0033	0.0023	ND	0.0033	0.0023	ND	0.0033	0.0023	0.17	1.1
PCB - 1242	ND	0.0033	0.00070	ND	0.0033	0.00069	ND	0.0033	0.00070	0.22	1.1
PCB - 1248	ND	0.0033	0.00043	ND	0.0033	0.00043	ND	0.0033	0.00043	0.22	1.1
PCB - 1254	ND	0.0033	0.00070	ND	0.0033	0.00069	ND	0.0033	0.00070	0.22	1.1
PCB - 1260	0.0024	0.0033	0.00099	0.0025	0.0033	0.00098	0.0024	0.0033	0.00099	0.22	1.1
RCRA Metals (EPA 6010B)	(7471A)										
Arsenic	3.8	5.7	0.25	4.4	5.7	0.25	2.6	5.7	0.25	0.39	0.43
Lead	7.7	2.9	0.23	58	2.8	0.23	9.3	2.9	0.23	400	400
Barium	80	0.96	0.029	80	0.95	0.028	84	0.95	0.029	15000	3100
Cadmium	ND	0.96	0.15	ND	0.95	0.15	ND	0.95	0.15	70	14
Chromium	140	2.5	0.090	140	2.5	0.089	130	2.5	0.090	280	500
Selenium	ND	9.6	0.23	ND	9.5	0.23	ND	9.5	0.23	390	78
Silver	ND	1.9	0.086	ND	1.9	0.085	ND	1.9	0.086	390	78
Mercury	ND	0.018	0.0057	ND	0.020	0.0062	0.0080	0.018	0.0057	4.3	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample ID (MI Soil Samples)							
		DU 2 - S114			DU 3 - S115			DU 4 - S116			
	(P	rimary Samp	le)	(P	rimary Samp	le)	(P	rimary Samp	le)		
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 8082)										
PCB - 1016	ND	0.0032	0.0010	ND	0.0033	0.0011	ND	0.0031	0.0010	3.9	1.1
PCB - 1221	ND	0.0032	0.0026	ND	0.0033	0.0027	ND	0.0031	0.0025	0.17	1.1
PCB - 1232	ND	0.0032	0.0023	ND	0.0033	0.0023	ND	0.0031	0.0022	0.17	1.1
PCB - 1242	ND	0.0032	0.00068	ND	0.0033	0.00070	ND	0.0031	0.00066	0.22	1.1
PCB - 1248	ND	0.0032	0.00042	ND	0.0033	0.00043	ND	0.0031	0.00041	0.22	1.1
PCB - 1254	ND	0.0032	0.00068	ND	0.0033	0.00070	ND	0.0031	0.00066	0.22	1.1
PCB - 1260	0.0037	0.0032	0.00097	0.0030	0.0033	0.0010	0.0024	0.0031	0.00094	0.22	1.1
RCRA Metals (EPA 6010B)	/7471A)										
Arsenic	5.4	5.4	0.23	3.9	5.9	0.25	7.8	5.6	0.24	0.39	0.43
Lead	12	2.7	0.21	17	2.9	0.23	11	2.8	0.23	400	400
Barium	120	0.89	0.027	66	0.98	0.029	81	0.94	0.028	15000	3100
Cadmium	0.25	0.89	0.14	ND	0.98	0.16	0.25	0.94	0.15	70	14
Chromium	150	2.3	0.084	120	2.5	0.092	160	2.4	0.088	280	500
Selenium	ND	8.9	0.21	ND	9.8	0.23	ND	9.4	0.23	390	78
Silver	ND	1.8	0.080	ND	2.0	0.088	ND	1.9	0.085	390	78
Mercury	ND	0.019	0.0061	ND	0.019	0.0061	ND	0.019	0.0061	4.3	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample ID (MI Soil Samples)							
		DU 5 - S117			DU 6 - S118			DU 7 - S119			
	(P	rimary Samp	le)	(P	rimary Samp	le)	(P	rimary Samp	le)		
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 8082)										
PCB - 1016	ND	0.0033	0.0010	ND	0.0033	0.0011	ND	0.0033	0.0011	3.9	1.1
PCB - 1221	ND	0.0033	0.0026	ND	0.0033	0.0026	ND	0.0033	0.0026	0.17	1.1
PCB - 1232	ND	0.0033	0.0023	ND	0.0033	0.0023	ND	0.0033	0.0023	0.17	1.1
PCB - 1242	ND	0.0033	0.00068	ND	0.0033	0.00069	ND	0.0033	0.00069	0.22	1.1
PCB - 1248	ND	0.0033	0.00042	ND	0.0033	0.00043	ND	0.0033	0.00043	0.22	1.1
PCB - 1254	ND	0.0033	0.00068	ND	0.0033	0.00069	ND	0.0033	0.00069	0.22	1.1
PCB - 1260	ND	0.0033	0.00098	0.0017	0.0033	0.00099	ND	0.0033	0.00099	0.22	1.1
RCRA Metals (EPA 6010B/	/7471A)										
Arsenic	2.0	5.6	0.24	2.3	5.8	0.25	9.1	5.9	0.25	0.39	0.43
Lead	5.1	2.8	0.23	10	2.9	0.23	17	2.9	0.23	400	400
Barium	51	0.94	0.028	66	0.97	0.029	71	0.98	0.029	15000	3100
Cadmium	ND	0.94	0.15	ND	0.97	0.16	0.36	0.98	0.16	70	14
Chromium	62	2.4	0.088	98	2.5	0.091	110	2.5	0.092	280	500
Selenium	0.31	9.4	0.23	ND	9.7	0.23	1.8	9.8	0.23	390	78
Silver	ND	1.9	0.084	ND	1.9	0.087	ND	2.0	0.088	390	78
Mercury	ND	0.019	0.0058	ND	0.019	0.0061	ND	0.020	0.0062	4.3	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	ID (MI Soil S	amples)]	
		DU 8 - S120			DU 9 - S121			DU 10 - S122			
	(P	rimary Samp	le)	(P	rimary Samp	le)	(P	rimary Samp	le)		
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
<u>Analyte</u>	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	6 (EPA 8082)										
PCB - 1016	ND	0.0030	0.00096	ND	0.0033	0.0010	ND	0.0033	0.0011	3.9	1.1
PCB - 1221	ND	0.0030	0.0024	ND	0.0033	0.0026	ND	0.0033	0.0027	0.17	1.1
PCB - 1232	ND	0.0030	0.0021	ND	0.0033	0.0023	ND	0.0033	0.0023	0.17	1.1
PCB - 1242	ND	0.0030	0.00063	ND	0.0033	0.00069	ND	0.0033	0.00070	0.22	1.1
PCB - 1248	ND	0.0030	0.00039	ND	0.0033	0.00043	ND	0.0033	0.00043	0.22	1.1
PCB - 1254	ND	0.0030	0.00063	ND	0.0033	0.00069	ND	0.0033	0.00070	0.22	1.1
PCB - 1260	0.0031	0.0030	0.00090	0.015	0.0033	0.00098	ND	0.0033	0.0010	0.22	1.1
RCRA Metals (EPA 6010B/	/7471A)										
Arsenic	14	5.8	0.25	17	5.7	0.25	4.9	6.0	0.26	0.39	0.43
Lead	11	2.9	0.23	11	2.8	0.23	11	3.0	0.24	400	400
Barium	57	0.97	0.029	55	0.96	0.029	70	1.0	0.030	15000	3100
Cadmium	0.30	0.97	0.15	0.26	0.96	0.15	ND	1.0	0.16	70	14
Chromium	100	2.5	0.091	110	2.5	0.090	110	2.6	0.094	280	500
Selenium	2.8	9.7	0.23	0.94	9.6	0.23	0.41	10	0.24	390	78
Silver	ND	1.9	0.087	ND	1.9	0.086	ND	2.0	0.090	390	78
Mercury	ND	0.019	0.0061	ND	0.019	0.0061	ND	0.019	0.0061	4.3	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	ID (MI Soil S	amples)]	
		DU 11 - S123	5		DU 12 - S124			DU 12 - S125	j		
	(P	rimary Samp	le)	(P	rimary Samp	le)	(Re	eplicate Samp	ole)		
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 8082)										
PCB - 1016	ND	0.0032	0.0010	ND	0.0033	0.0011	ND	0.0033	0.0011	3.9	1.1
PCB - 1221	ND	0.0032	0.0026	ND	0.0033	0.0026	ND	0.0033	0.0027	0.17	1.1
PCB - 1232	ND	0.0032	0.0023	ND	0.0033	0.0023	ND	0.0033	0.0023	0.17	1.1
PCB - 1242	ND	0.0032	0.00068	ND	0.0033	0.00070	ND	0.0033	0.00070	0.22	1.1
PCB - 1248	ND	0.0032	0.00042	ND	0.0033	0.00043	ND	0.0033	0.00043	0.22	1.1
PCB - 1254	ND	0.0032	0.00068	ND	0.0033	0.00070	ND	0.0033	0.00070	0.22	1.1
PCB - 1260	0.0033	0.0032	0.00096	0.0019	0.0033	0.0010	ND	0.0033	0.0010	0.22	1.1
RCRA Metals (EPA 6010B)	/7471A)										
Arsenic	11	5.7	0.25	1.8	5.9	0.25	4.4	5.8	0.25	0.39	0.43
Lead	6.8	2.8	0.23	11	2.9	0.23	11	2.9	0.23	400	400
Barium	51	0.95	0.028	65	0.98	0.029	67	0.97	0.029	15000	3100
Cadmium	0.22	0.95	0.15	ND	0.98	0.16	0.16	0.97	0.16	70	14
Chromium	78	2.5	0.089	87	2.5	0.092	100	2.5	0.091	280	500
Selenium	3.1	9.5	0.23	ND	9.8	0.23	ND	9.7	0.23	390	78
Silver	ND	1.9	0.085	ND	2.0	0.088	ND	1.9	0.087	390	78
Mercury	ND	0.019	0.0061	ND	0.020	0.0062	ND	0.019	0.0058	4.3	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	ID (MI Soil S	amples)]	
		DU 12 - S126	5		DU 13 - S127	,		DU 14 - S128	5		
	(Re	plicate Sam	ole)	(P	rimary Samp	le)	(P	rimary Samp	le)		
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 8082)										
PCB - 1016	ND	0.0032	0.0010	ND	0.0033	0.0011	ND	0.0033	0.0010	3.9	1.1
PCB - 1221	ND	0.0032	0.0026	ND	0.0033	0.0026	ND	0.0033	0.0026	0.17	1.1
PCB - 1232	ND	0.0032	0.0023	ND	0.0033	0.0023	ND	0.0033	0.0023	0.17	1.1
PCB - 1242	ND	0.0032	0.00068	ND	0.0033	0.00070	ND	0.0033	0.00069	0.22	1.1
PCB - 1248	ND	0.0032	0.00042	ND	0.0033	0.00043	ND	0.0033	0.00043	0.22	1.1
PCB - 1254	ND	0.0032	0.00068	ND	0.0033	0.00070	ND	0.0033	0.00069	0.22	1.1
PCB - 1260	0.0076	0.0032	0.00097	0.0024	0.0033	0.00099	0.0067	0.0033	0.00098	0.22	1.1
RCRA Metals (EPA 6010B	/7471A)										
Arsenic	15	5.8	0.25	2.6	6.0	0.26	6.7	5.7	0.25	0.39	0.43
Lead	46	2.9	0.23	18	3.0	0.24	8.5	2.9	0.23	400	400
Barium	66	0.97	0.029	55	1.0	0.030	53	0.96	0.029	15000	3100
Cadmium	0.25	0.97	0.15	ND	1.0	0.16	ND	0.96	0.15	70	14
Chromium	98	2.5	0.091	240	2.6	0.094	240	2.5	0.090	280	500
Selenium	2.7	9.7	0.23	ND	10	0.24	ND	9.6	0.23	390	78
Silver	ND	1.9	0.087	ND	2.0	0.090	ND	1.9	0.086	390	78
Mercury	ND	0.020	0.0062	ND	0.019	0.0059	ND	0.018	0.0055	4.3	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	ID (MI Soil S	amples)]	
		DU 15 - S129			DU 16 - S130)		DU 17 - S131			
	(P	rimary Samp	le)	(P	rimary Samp	le)	(P	rimary Samp	le)		
			Method			Method			Method	Regulator	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
<u>Analyte</u>	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 8082)										
PCB - 1016	ND	0.0032	0.0010	ND	0.0033	0.0011	ND	0.0033	0.0010	3.9	1.1
PCB - 1221	ND	0.0032	0.0026	ND	0.0033	0.0026	ND	0.0033	0.0026	0.14	1.1
PCB - 1232	ND	0.0032	0.0023	ND	0.0033	0.0023	ND	0.0033	0.0023	0.14	1.1
PCB - 1242	ND	0.0032	0.00068	ND	0.0033	0.00069	ND	0.0033	0.00069	0.22	1.1
PCB - 1248	ND	0.0032	0.00042	ND	0.0033	0.00043	ND	0.0033	0.00043	0.22	1.1
PCB - 1254	ND	0.0032	0.00068	ND	0.0033	0.00069	ND	0.0033	0.00069	0.22	1.1
PCB - 1260	0.0044	0.0032	0.00097	0.0060	0.0033	0.00099	ND	0.0033	0.00098	0.22	1.1
RCRA Metals (EPA 6010B)	/7471A)										
Arsenic	11	5.9	0.25	11	5.6	0.24	1.0	5.8	0.25	0.39	0.43
Lead	9.5	2.9	0.23	11	2.8	0.22	7.0	2.9	0.23	400	400
Barium	53	0.98	0.029	58	0.94	0.028	95	0.97	0.029	15000	3100
Cadmium	ND	0.98	0.16	0.42	0.94	0.15	ND	0.97	0.15	70	14
Chromium	230	2.5	0.092	130	2.4	0.088	270	2.5	0.091	280	500
Selenium	ND	9.8	0.23	ND	9.4	0.22	ND	9.7	0.23	390	78
Silver	ND	2.0	0.088	ND	1.9	0.084	ND	1.9	0.087	390	78
Mercury	ND	0.017	0.0053	ND	0.019	0.0061	ND	0.020	0.0062	5.6	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	ID (MI Soil S	amples)				1	
		DU 18 - S132			DU 19 - S133			DU 20 - S134		1	
	(P	rimary Samp	le)	(P	rimary Samp	le)	(P	rimary Samp	le)		
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 8082)										
PCB - 1016	ND	0.0033	0.0010	ND	0.0032	0.0010	ND	0.0032	0.0010	3.9	1.1
PCB - 1221	ND	0.0033	0.0026	ND	0.0032	0.0026	ND	0.0032	0.0025	0.14	1.1
PCB - 1232	ND	0.0033	0.0023	ND	0.0032	0.0023	ND	0.0032	0.0022	0.14	1.1
PCB - 1242	ND	0.0033	0.00069	ND	0.0032	0.00068	ND	0.0032	0.00067	0.22	1.1
PCB - 1248	ND	0.0033	0.00043	ND	0.0032	0.00042	ND	0.0032	0.00041	0.22	1.1
PCB - 1254	ND	0.0033	0.00069	ND	0.0032	0.00068	ND	0.0032	0.00067	0.22	1.1
PCB - 1260	0.0023	0.0033	0.00098	0.0017	0.0032	0.00097	0.0021	0.0032	0.00096	0.22	1.1
RCRA Metals (EPA 6010B)	/7471A)										
Arsenic	4.7	5.7	0.25	4.5	5.8	0.25	8.2	5.9	0.25	0.39	0.43
Lead	7.0	2.8	0.23	6.7	2.9	0.23	8.3	2.9	0.23	400	400
Barium	88	0.95	0.028	65	0.97	0.029	64	0.98	0.029	15000	3100
Cadmium	ND	0.95	0.15	ND	0.97	0.16	0.24	0.98	0.16	70	14
Chromium	250	2.5	0.089	290	2.5	0.092	200	2.5	0.092	280	500
Selenium	ND	9.5	0.23	ND	9.7	0.23	0.59	9.8	0.23	390	78
Silver	ND	1.9	0.085	ND	1.9	0.088	ND	2.0	0.088	390	78
Mercury	ND	0.019	0.0061	ND	0.018	0.0056	ND	0.019	0.0061	5.6	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

Table C-5: Berm and Mound MI Sample ResultsSoil Sample Analytical Results Summary

			<u>Samp</u>	ample ID (Trenched Berm/Mound Soil Samples)							
		Berm 1 - B01			Berm 2 - B02			Berm 3 - B03	6		
	(P	rimary Samp	le)	(P	rimary Samp	le)	(P	rimary Samp	le)		
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	6 (EPA 8082)									_	
PCB - 1016	ND	0.0032	0.0010	ND	0.0031	0.00099	ND	0.0032	0.0010	3.9	1.1
PCB - 1221	ND	0.0032	0.0026	ND	0.0031	0.0025	ND	0.0032	0.0026	0.14	1.1
PCB - 1232	ND	0.0032	0.0022	ND	0.0031	0.0025	ND	0.0032	0.0023	0.14	1.1
PCB - 1242	ND	0.0032	0.00067	ND	0.0031	0.00065	ND	0.0032	0.00068	0.22	1.1
PCB - 1248	ND	0.0032	0.00042	ND	0.0031	0.00040	ND	0.0032	0.00042	0.22	1.1
PCB - 1254	ND	0.0032	0.00067	ND	0.0031	0.00065	ND	0.0032	0.00068	0.22	1.1
PCB - 1260	ND	0.0032	0.00096	ND	0.0031	0.00093	ND	0.0032	0.00096	0.22	1.1
RCRA Metals (EPA 6010B)	/7471A)										
Arsenic	6.4	27	1.2	4.4	27	1.2	2.2	27	1.2	0.39	0.43
Lead	4.8	14	1.1	5.0	14	1.1	8.1	13	1.1	400	400
Barium	78	4.5	0.14	130	4.5	0.14	280	4.5	0.13	15000	3100
Cadmium	ND	4.5	0.72	ND	4.5	0.73	ND	4.5	0.71	70	14
Chromium	250	12	0.42	260	12	0.43	270	12	0.42	280	500
Selenium	ND	45	1.1	ND	45	1.1	ND	45	1.1	390	78
Silver	ND	9.0	0.41	ND	9.1	0.41	ND	8.9	0.40	390	78
Mercury	0.011	0.018	0.0056	0.017	0.018	0.0057	ND	0.018	0.0056	5.6	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

			<u>Samp</u>	le ID (Trencl	ned Berm/Mo	und Soil San	nples)				
		Berm 4 - B04			Berm 5 - B05			Berm 6 - B06	5		
	(P	rimary Samp	le)	(P	rimary Samp	le)	(P	rimary Samp	le)		
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	6 (EPA 8082)										
PCB - 1016	ND	0.0033	0.0010	ND	0.0033	0.0010	ND	0.0033	0.0010	3.9	1.1
PCB - 1221	ND	0.0033	0.0026	ND	0.0033	0.0026	ND	0.0033	0.0026	0.14	1.1
PCB - 1232	ND	0.0033	0.0023	ND	0.0033	0.0023	ND	0.0033	0.0023	0.14	1.1
PCB - 1242	ND	0.0033	0.00069	ND	0.0033	0.00068	ND	0.0033	0.00069	0.22	1.1
PCB - 1248	ND	0.0033	0.00042	ND	0.0033	0.00042	ND	0.0033	0.00042	0.22	1.1
PCB - 1254	ND	0.0033	0.00069	ND	0.0033	0.00068	ND	0.0033	0.00069	0.22	1.1
PCB - 1260	ND	0.0033	0.00098	0.0029	0.0033	0.00098	ND	0.0033	0.00098	0.22	1.1
RCRA Metals (EPA 6010B/	/7471A)										
Arsenic	2.4	29	1.2	16	29	1.2	4.3	29	1.2	0.39	0.43
Lead	4.7	14	1.2	ND	14	1.2	2.0	14	1.2	400	400
Barium	230	4.8	0.14	110	4.8	0.14	110	4.8	0.14	15000	3100
Cadmium	ND	4.8	0.77	ND	4.8	0.77	ND	4.8	0.77	70	14
Chromium	290	12	0.45	160	12	0.45	260	12	0.45	280	500
Selenium	ND	48	1.2	1.2	48	1.2	ND	48	1.2	390	78
Silver	ND	9.6	0.43	ND	9.6	0.43	ND	9.6	0.43	390	78
Mercury	0.0065	0.019	0.0061	ND	0.019	0.0061	ND	0.019	0.0061	5.6	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

			<u>Samp</u>	le ID (Trencl	ned Berm/Mo	und Soil San	nples)				
		Berm 7 - B07	,		Berm 8 - B08			Berm 9 - B09			
	(P	rimary Samp	le)	(P	rimary Samp	le)	(P	rimary Samp	le)		
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
<u>Analyte</u>	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 8082)										
PCB - 1016	ND	0.0033	0.0011	ND	0.0033	0.0010	ND	0.0032	0.0010	3.9	1.1
PCB - 1221	ND	0.0033	0.0026	ND	0.0033	0.0026	ND	0.0032	0.0026	0.17	1.1
PCB - 1232	ND	0.0033	0.0023	ND	0.0033	0.0023	ND	0.0032	0.0023	0.17	1.1
PCB - 1242	ND	0.0033	0.00069	ND	0.0033	0.00069	ND	0.0032	0.00068	0.22	1.1
PCB - 1248	ND	0.0033	0.00043	ND	0.0033	0.00043	ND	0.0032	0.00042	0.22	1.1
PCB - 1254	ND	0.0033	0.00069	ND	0.0033	0.00069	ND	0.0032	0.00068	0.22	1.1
PCB - 1260	0.0074	0.0033	0.00099	ND	0.0033	0.00098	0.033	0.0032	0.00097	0.22	1.1
RCRA Metals (EPA 6010B/	/7471A)										
Arsenic	37	29	1.2	9.1	29	1.2	10	28	1.2	0.39	0.43
Lead	7.7	14	1.2	ND	14	1.1	25	14	1.1	400	400
Barium	140	4.8	0.14	36	4.8	0.14	140	4.7	0.14	15000	3100
Cadmium	ND	4.8	0.77	ND	4.8	0.76	ND	4.7	0.75	70	14
Chromium	350	12	0.45	51	12	0.45	190	12	0.44	280	500
Selenium	ND	48	1.2	2.5	48	1.1	ND	47	1.1	390	78
Silver	ND	9.6	0.43	ND	9.5	0.43	ND	9.4	0.42	390	78
Mercury	ND	0.019	0.0061	ND	0.019	0.0060	ND	0.019	0.0059	4.3	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

			<u>Samp</u>	ample ID (Trenched Berm/Mound Soil Samples)							
	l	Berm 10 - B10	0		Berm 10 - B1 [.]	1		Berm 10 - B1	2		
	(P	rimary Samp	le)	(Re	eplicate Sam	ole)	(Re	eplicate Sam	ple)		
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
<u>Analyte</u>	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 8082)										
PCB - 1016	ND	0.0033	0.0010	ND	0.0033	0.0010	ND	0.0033	0.0010	3.9	1.1
PCB - 1221	ND	0.0033	0.0026	ND	0.0033	0.0026	ND	0.0033	0.0026	0.17	1.1
PCB - 1232	ND	0.0033	0.0023	ND	0.0033	0.0023	ND	0.0033	0.0023	0.17	1.1
PCB - 1242	ND	0.0033	0.00069	ND	0.0033	0.00069	ND	0.0033	0.00068	0.22	1.1
PCB - 1248	ND	0.0033	0.00043	ND	0.0033	0.00042	ND	0.0033	0.00042	0.22	1.1
PCB - 1254	ND	0.0033	0.00069	ND	0.0033	0.00069	ND	0.0033	0.00068	0.22	1.1
PCB - 1260	0.019	0.0033	0.00098	0.019	0.0033	0.00098	0.017	0.0033	0.00098	0.22	1.1
RCRA Metals (EPA 6010B)	/7471A)										
Arsenic	13	29	1.2	10	28	1.2	15	28	1.2	0.39	0.43
Lead	12	14	1.2	5.6	14	1.1	5.8	14	1.1	400	400
Barium	150	4.8	0.14	140	4.6	0.14	150	4.7	0.14	15000	3100
Cadmium	ND	4.8	0.77	ND	4.6	0.74	ND	4.7	0.75	70	14
Chromium	220	12	0.45	200	12	0.44	220	12	0.44	280	500
Selenium	ND	48	1.2	ND	46	1.1	ND	47	1.1	390	78
Silver	ND	9.6	0.43	ND	9.3	0.42	ND	9.3	0.42	390	78
Mercury	ND	0.019	0.0061	ND	0.019	0.0058	ND	0.019	0.0059	4.3	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

			<u>Samp</u>	le ID (Trencl	hed Berm/Mo	und Soil San	nples)]	
	I	Berm 11 - B13	3		Berm 12 - B14	4		Berm 13 - B1	5		
	(P	rimary Samp	le)	(P	rimary Samp	le)	(P	rimary Samp	le)		
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
<u>Analyte</u>	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 8082)									_	
PCB - 1016	ND	0.0033	0.0011	ND	0.0033	0.0011	ND	0.0032	0.0010	3.9	1.1
PCB - 1221	ND	0.0033	0.0026	ND	0.0033	0.0026	ND	0.0032	0.0026	0.17	1.1
PCB - 1232	ND	0.0033	0.0023	ND	0.0033	0.0023	ND	0.0032	0.0023	0.17	1.1
PCB - 1242	ND	0.0033	0.00069	ND	0.0033	0.00070	ND	0.0032	0.00068	0.22	1.1
PCB - 1248	ND	0.0033	0.00043	ND	0.0033	0.00043	ND	0.0032	0.00042	0.22	1.1
PCB - 1254	ND	0.0033	0.00069	ND	0.0033	0.00070	ND	0.0032	0.00068	0.22	1.1
PCB - 1260	ND	0.0033	0.00099	ND	0.0033	0.00099	ND	0.0032	0.00097	0.22	1.1
RCRA Metals (EPA 6010B/	/7471A)										
Arsenic	4.6	29	1.3	5.8	29	1.2	2.6	29	1.2	0.39	0.43
Lead	ND	15	1.2	2.2	14	1.1	ND	14	1.1	400	400
Barium	32	4.9	0.15	140	4.8	0.14	79	4.8	0.14	15000	3100
Cadmium	ND	4.9	0.78	ND	4.8	0.76	ND	4.8	0.76	70	14
Chromium	49	13	0.46	480	12	0.45	430	12	0.45	280	500
Selenium	1.5	49	1.2	ND	48	1.1	ND	48	1.1	390	78
Silver	ND	9.8	0.44	ND	9.5	0.43	ND	9.5	0.43	390	78
Mercury	ND	0.020	0.0062	0.013	0.019	0.0060	ND	0.019	0.0060	4.3	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

			<u>Samp</u>	le ID (Trencl	hed Berm/Mo	und Soil San	nples)				
	l	Berm 14 - B10	6		Berm 15 - B1	7		Berm 16 - B1	8		
	(P	rimary Samp	le)	(P	rimary Samp	le)	(P	rimary Samp	le)		
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
<u>Analyte</u>	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 8082)										
PCB - 1016	ND	0.0033	0.0011	ND	0.0033	0.0011	ND	0.0033	0.0010	3.9	1.1
PCB - 1221	ND	0.0033	0.0027	ND	0.0033	0.0026	ND	0.0033	0.0026	0.17	1.1
PCB - 1232	ND	0.0033	0.0023	ND	0.0033	0.0023	ND	0.0033	0.0023	0.17	1.1
PCB - 1242	ND	0.0033	0.00070	ND	0.0033	0.00069	ND	0.0033	0.00069	0.22	1.1
PCB - 1248	ND	0.0033	0.00043	ND	0.0033	0.00043	ND	0.0033	0.00043	0.22	1.1
PCB - 1254	ND	0.0033	0.00070	ND	0.0033	0.00069	ND	0.0033	0.00069	0.22	1.1
PCB - 1260	ND	0.0033	0.0010	0.0022	0.0033	0.00099	ND	0.0033	0.00098	0.22	1.1
RCRA Metals (EPA 6010B)	/7471A)										
Arsenic	8.5	29	1.2	1.8	27	1.2	13	28	1.2	0.39	0.43
Lead	ND	14	1.2	ND	14	1.1	ND	14	1.1	400	400
Barium	79	4.8	0.14	200	4.5	0.14	73	4.6	0.14	15000	3100
Cadmium	ND	4.8	0.77	ND	4.5	0.73	ND	4.6	0.74	70	14
Chromium	440	12	0.45	450	12	0.43	320	12	0.44	280	500
Selenium	ND	48	1.2	ND	45	1.1	ND	46	1.1	390	78
Silver	ND	9.6	0.43	ND	9.1	0.41	ND	9.3	0.42	390	78
Mercury	0.0090	0.019	0.0061	0.0075	0.018	0.0057	0.012	0.019	0.0058	4.3	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

			<u>Samp</u>	le ID (Trencl	hed Berm/Mo	und Soil San	nples)				
	l	Berm 17 - B19	9		Berm 18 - B2	0		Berm 19 - B2	1		
	(P	rimary Samp	le)	(P	rimary Samp	le)	(P	rimary Samp	le)		
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 8082)										
PCB - 1016	ND	0.0033	0.0011	ND	0.0032	0.0010	ND	0.0033	0.0011	3.9	1.1
PCB - 1221	ND	0.0033	0.0026	ND	0.0032	0.0026	ND	0.0033	0.0026	0.17	1.1
PCB - 1232	ND	0.0033	0.0023	ND	0.0032	0.0023	ND	0.0033	0.0023	0.17	1.1
PCB - 1242	ND	0.0033	0.00069	ND	0.0032	0.00068	ND	0.0033	0.00069	0.22	1.1
PCB - 1248	ND	0.0033	0.00043	ND	0.0032	0.00042	ND	0.0033	0.00043	0.22	1.1
PCB - 1254	ND	0.0033	0.00069	ND	0.0032	0.00068	ND	0.0033	0.00069	0.22	1.1
PCB - 1260	ND	0.0033	0.00099	0.0031	0.0032	0.00097	0.0057	0.0033	0.00099	0.22	1.1
RCRA Metals (EPA 6010B)	/7471A)										
Arsenic	9.0	28	1.2	2.7	29	1.2	9.1	28	1.2	0.39	0.43
Lead	ND	14	1.1	ND	14	1.1	7.8	14	1.1	400	400
Barium	100	4.6	0.14	100	4.8	0.14	140	4.6	0.14	15000	3100
Cadmium	ND	4.6	0.73	ND	4.8	0.76	ND	4.6	0.73	70	14
Chromium	380	12	0.43	430	12	0.45	200	12	0.43	280	500
Selenium	ND	46	1.1	ND	48	1.1	ND	46	1.1	390	78
Silver	ND	9.2	0.41	ND	9.5	0.43	ND	9.2	0.41	390	78
Mercury	ND	0.018	0.0058	0.012	0.019	0.0060	ND	0.018	0.0057	4.3	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

			<u>Samp</u>	le ID (Trencl	ned Berm/Mo	und Soil San	nples)				
	l	3erm 20 - B2	2		Berm 20 - B23	3		Berm 20 - B2	4		
	(P	rimary Samp	le)	(Re	eplicate Sam	ole)	(Re	eplicate Sam	ole)		
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 8082)										
PCB - 1016	ND	0.0030	0.0010	ND	0.0033	0.0011	ND	0.0033	0.0011	3.9	1.1
PCB - 1221	ND	0.0030	0.0024	ND	0.0033	0.0027	ND	0.0033	0.0027	0.17	1.1
PCB - 1232	ND	0.0030	0.0021	ND	0.0033	0.0023	ND	0.0033	0.0023	0.17	1.1
PCB - 1242	ND	0.0030	0.00064	ND	0.0033	0.00070	ND	0.0033	0.00070	0.22	1.1
PCB - 1248	ND	0.0030	0.00040	ND	0.0033	0.00043	ND	0.0033	0.00043	0.22	1.1
PCB - 1254	ND	0.0030	0.00069	ND	0.0033	0.00070	ND	0.0033	0.00070	0.22	1.1
PCB - 1260	0.0036	0.0030	0.00091	0.0033	0.0033	0.0010	0.0033	0.0033	0.0010	0.22	1.1
RCRA Metals (EPA 6010B)	/7471A)										
Arsenic	6.5	28	1.2	6.4	27	1.2	6.5	28	1.2	0.39	0.43
Lead	1.6	14	1.1	1.6	14	1.1	1.3	14	1.1	400	400
Barium	130	4.7	0.14	130	4.5	0.14	130	4.6	0.14	15000	3100
Cadmium	ND	4.7	0.75	ND	4.5	0.73	ND	4.6	0.74	70	14
Chromium	220	12	0.44	210	12	0.43	210	12	0.44	280	500
Selenium	ND	47	1.1	ND	45	1.1	ND	46	1.1	390	78
Silver	ND	9.3	0.42	ND	9.1	0.41	ND	9.3	0.42	390	78
Mercury	ND	0.019	0.0059	ND	0.018	0.0057	ND	0.0019	0.0058	4.3	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

Table C-6: Groundwater Sample ResultsGroundwater Sample Analytical Results Summary

				Sample ID	(Groundwate	r Samples)				
		MW-2 - W01			MW-2 - W02			MW-1 - W03		
	(P	rimary Samp	le)	(Dı	plicate Samp	ole)	(P	rimary Samp	le)	
			Method			Method			Method	
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	GAL
Analyte	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Volatile Organic Compounds	(EPA 8260B)								
Chloromethane	ND	5.0	0.18	ND	5.0	0.18	ND	5.0	0.18	290
Vinyl Chloride	ND	1.0	0.091	ND	1.0	0.091	ND	1.0	0.091	21
Bromomethane	ND	5.0	0.091	ND	5.0	0.091	ND	5.0	0.091	360
Chloroethane	ND	5.0	0.25	ND	5.0	0.25	ND	5.0	0.25	3.9
Trichlorofluoromethane	ND	1.0	0.069	ND	1.0	0.069	ND	1.0	0.069	NS
1,1-Dichloroethene	ND	1.0	0.066	ND	1.0	0.066	ND	1.0	0.066	3900
Methylene Chloride	ND	1.0	0.10	ND	1.0	0.10	ND	1.0	0.10	3100
trans-1,2-Dichloroethene	ND	1.0	0.051	ND	1.0	0.051	ND	1.0	0.051	2600
1,1-Dichloroethane	ND	1.0	0.049	ND	1.0	0.049	ND	1.0	0.049	47
cis-1,2-Dichloroethene	ND	1.0	0.067	ND	1.0	0.067	ND	1.0	0.067	4300
Chloroform	ND	1.0	0.057	ND	1.0	0.057	ND	1.0	0.057	74
1,1,1-Trichloroethane	ND	1.0	0.041	ND	1.0	0.041	ND	1.0	0.041	6000
Carbon tetrachloride	ND	1.0	0.10	ND	1.0	0.10	ND	1.0	0.10	31
1,2-Dichloroethane	ND	1.0	0.076	ND	1.0	0.076	ND	1.0	0.076	120
Trichloroethene	0.71	1.0	0.056	0.53	1.0	0.056	ND	1.0	0.056	480
1,2-Dichloropropane	ND	1.0	0.14	ND	1.0	0.14	ND	1.0	0.14	100
Bromodichloromethane	ND	1.0	0.053	ND	1.0	0.053	ND	1.0	0.053	160
cis-1,3-Dichloropropene	ND	1.0	0.051	ND	1.0	0.051	ND	1.0	0.051	260
trans-1,3-Dichloropropene	ND	1.0	0.043	ND	1.0	0.043	ND	1.0	0.043	260
1,1,2-Trichloroethane	ND	1.0	0.062	ND	1.0	0.062	ND	1.0	0.062	300
Tetrachloroethene	ND	1.0	0.063	ND	1.0	0.063	ND	1.0	0.063	140
Dibromochloromethane	ND	1.0	0.32	ND	1.0	0.32	ND	1.0	0.32	270
Chlorobenzene	ND	1.0	0.086	ND	1.0	0.086	ND	1.0	0.086	160
Bromoform	ND	1.0	0.11	ND	1.0	0.11	ND	1.0	0.11	5100
Methyl tert-butyl ether	ND	1.0	0.062	ND	1.0	0.062	ND	1.0	0.062	1800
1,1,2,2-Tetrachloroethane	ND	1.0	0.062	ND	1.0	0.062	ND	1.0	0.062	160
1,3-Dichlorobenzene	ND	1.0	0.091	ND	1.0	0.091	ND	1.0	0.091	370

Bold values indicate that detected concentration exceeds the HDOH Groundwater Action Level where groundwater is not a current or potential drinking water *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit.

ND = Not detected

				Sample ID	(Groundwate	r Samples)				
		MW-2 - W01			MW-2 - W02			MW-1 - W03		
	(P	rimary Samp	le)	(Dı	plicate Sam	ole)	(P	rimary Samp	ole)	
			Method			Method			Method	
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	GAL
Analyte	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Volatile Organic Compounds	(EPA 8260B)								
1,4-Dichlorobenzene	ND	1.0	0.075	ND	1.0	0.075	ND	1.0	0.075	110
1,2-Dichlorobenzene	ND	1.0	0.061	ND	1.0	0.061	ND	1.0	0.061	100
Benzene	ND	1.0	0.057	ND	1.0	0.057	ND	1.0	0.057	1500
Toluene	ND	1.0	0.076	0.084	1.0	0.076	ND	1.0	0.076	400
Ethylbenzene	ND	1.0	0.061	ND	1.0	0.061	ND	1.0	0.061	300
m-Xylene & p-Xylene	ND	2.0	0.11	ND	2.0	0.11	ND	2.0	0.11	1000
o-Xylene	ND	1.0	0.080	ND	1.0	0.080	ND	1.0	0.080	1000
Semivolatile Compounds (EF	PA 8270C)									
Naphthalene	ND	2.1	0.077	ND	2.1	0.076	ND	2.1	0.076	210
2-Methylnaphthalene	ND	1.0	0.10	ND	1.0	0.10	ND	1.0	0.10	100
1-Methylnaphthalene	ND	0.31	0.15	ND	0.31	0.14	ND	0.31	0.14	100
Acenaphthylene	ND	0.42	0.039	ND	0.41	0.038	ND	0.41	0.038	300
Acenaphthene	ND	0.52	0.040	ND	0.52	0.039	ND	0.51	0.039	200
Fluorene	ND	0.31	0.039	ND	0.31	0.038	ND	0.31	0.038	300
Phenanthrene	ND	0.42	0.048	ND	0.41	0.047	ND	0.41	0.047	7.7
Anthracene	ND	0.21	0.043	ND	0.21	0.042	ND	0.20	0.042	0.73
Fluoranthene	ND	0.26	0.067	ND	0.26	0.066	ND	0.26	0.065	40
Pyrene	ND	0.31	0.055	ND	0.31	0.055	ND	0.31	0.054	2.0
Benzo[a]anthracene	ND	0.31	0.070	ND	0.31	0.069	ND	0.31	0.068	0.027
Chysene	ND	0.21	0.068	ND	0.21	0.067	ND	0.20	0.066	0.35
Benzo[b]fluoranthene	ND	0.42	0.057	ND	0.41	0.057	ND	0.41	0.056	0.092
Benzo[k]fluoranthene	ND	0.31	0.046	ND	0.31	0.045	ND	0.31	0.045	0.40
Benzo[a]pyrene	ND	0.21	0.075	ND	0.21	0.074	ND	0.20	0.073	0.014
Indeno[1,2,3-cd]pyrene	ND	0.31	0.059	ND	0.31	0.059	ND	0.31	0.058	0.092
Dibenz(a,h)anthracene	ND	0.31	0.054	ND	0.31	0.054	ND	0.31	0.053	0.52
Benzo[g,h,i]perylene	ND	0.31	0.060	ND	0.31	0.060	ND	0.31	0.059	0.10

Bold values indicate that detected concentration exceeds the HDOH Groundwater Action Level where groundwater is not a current or potential drinking water *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit.

ND = Not detected

				Sample ID	(Groundwate	r Samples)				
		MW-2 - W01			MW-2 - W02			MW-1 - W03		
	(P	rimary Samp	le)	(Di	uplicate Sam	ole)	(P	rimary Samp	le)	
			Method			Method			Method	
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	GAL
Analyte	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Gasoline Range Organics (El										
HI Gasoline Range Organics	510	50	9.2	490	50	9.2	170	50	9.2	5000
Diesel Range Organics (EPA	8015B)									
HI Diesel Range Organics	ND	250	62	62	250	62	ND	270	67	2500
HI Residual Range Organics	93	500	56	150	510	57	ND	550	65	2500
Polychlorinated Bipheynls (E	PA 8082)						_			
PCB - 1016	ND	0.59	0.053	ND	0.57	0.051	ND	0.55	0.049	2.0
PCB - 1221	ND	0.59	0.073	ND	0.57	0.071	ND	0.55	0.068	2.0
PCB - 1232	ND	0.59	0.049	ND	0.57	0.047	ND	0.55	0.045	2.0
PCB - 1242	ND	0.59	0.049	ND	0.57	0.047	ND	0.55	0.045	2.0
PCB - 1248	ND	0.59	0.084	ND	0.57	0.081	ND	0.55	0.078	2.0
PCB - 1254	ND	0.59	0.052	ND	0.57	0.050	ND	0.55	0.048	2.0
PCB - 1260	ND	0.59	0.046	ND	0.57	0.044	ND	0.55	0.043	2.0
RCRA Metals (EPA 6010B/74	71A)									
Arsenic	ND	60	4.7	5.1	60	4.7	ND	60	4.7	69
Lead	ND	30	1.7	ND	30	1.7	ND	30	1.7	29
Barium	29	10	0.35	30	10	0.35	29	10	0.35	2000
Cadmium	ND	10	1.5	ND	10	1.5	ND	10	1.5	3.0
Chromium	ND	25	3.3	ND	25	3.3	4	25	3.3	570
Selenium	ND	100	2.0	ND	100	2.0	ND	100	2.0	20
Silver	ND	20	0.85	ND	20	0.85	ND	20	0.85	1.0
Mercury	ND	0.20	0.041	ND	0.20	0.041	ND	0.20	0.041	2.1

Bold values indicate that detected concentration exceeds the HDOH Groundwater Action Level where groundwater is not a current or potential drinking water *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

		Sample ID (Groundwater Samples)											
		MW-3 - W04			MW-4 - W05			MW-6 - W06					
	(P	rimary Samp	le)	(P	rimary Samp	le)	(P	rimary Samp	le)				
			Method			Method			Method				
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	HDOH			
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	GAL			
Analyte	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)			
Volatile Organic Compounds	; (EPA 8260B)											
Chloromethane	ND	5.0	0.18	ND	5.0	0.18	ND	5.0	0.18	290			
Vinyl Chloride	ND	1.0	0.091	ND	1.0	0.091	ND	1.0	0.091	21			
Bromomethane	ND	5.0	0.091	ND	5.0	0.091	ND	5.0	0.091	360			
Chloroethane	ND	5.0	0.25	ND	5.0	0.25	ND	5.0	0.25	3.9			
Trichlorofluoromethane	ND	1.0	0.069	ND	1.0	0.069	ND	1.0	0.069	NS			
1,1-Dichloroethene	ND	1.0	0.066	ND	1.0	0.066	ND	1.0	0.066	3900			
Methylene Chloride	ND	1.0	0.10	ND	1.0	0.10	ND	1.0	0.10	3100			
trans-1,2-Dichloroethene	ND	1.0	0.051	ND	1.0	0.051	ND	1.0	0.051	2600			
1,1-Dichloroethane	ND	1.0	0.049	ND	1.0	0.049	ND	1.0	0.049	47			
cis-1,2-Dichloroethene	ND	1.0	0.067	ND	1.0	0.067	ND	1.0	0.067	4300			
Chloroform	ND	1.0	0.057	ND	1.0	0.057	ND	1.0	0.057	74			
1,1,1-Trichloroethane	ND	1.0	0.041	ND	1.0	0.041	ND	1.0	0.041	6000			
Carbon tetrachloride	ND	1.0	0.10	ND	1.0	0.10	ND	1.0	0.10	31			
1,2-Dichloroethane	ND	1.0	0.076	ND	1.0	0.076	ND	1.0	0.076	120			
Trichloroethene	0.32	1.0	0.056	0.50	1.0	0.056	0.53	1.0	0.056	480			
1,2-Dichloropropane	ND	1.0	0.14	ND	1.0	0.14	ND	1.0	0.14	100			
Bromodichloromethane	ND	1.0	0.053	ND	1.0	0.053	ND	1.0	0.053	160			
cis-1,3-Dichloropropene	ND	1.0	0.051	ND	1.0	0.051	ND	1.0	0.051	260			
trans-1,3-Dichloropropene	ND	1.0	0.043	ND	1.0	0.043	ND	1.0	0.043	260			
1,1,2-Trichloroethane	ND	1.0	0.062	ND	1.0	0.062	ND	1.0	0.062	300			
Tetrachloroethene	ND	1.0	0.063	ND	1.0	0.063	ND	1.0	0.063	140			
Dibromochloromethane	ND	1.0	0.32	ND	1.0	0.32	ND	1.0	0.32	270			
Chlorobenzene	ND	1.0	0.086	ND	1.0	0.086	ND	1.0	0.086	160			
Bromoform	ND	1.0	0.11	ND	1.0	0.11	ND	1.0	0.11	5100			
Methyl tert-butyl ether	ND	1.0	0.062	ND	1.0	0.062	ND	1.0	0.062	1800			
1,1,2,2-Tetrachloroethane	ND	1.0	0.062	ND	1.0	0.062	ND	1.0	0.062	160			
1,3-Dichlorobenzene	ND	1.0	0.091	ND	1.0	0.091	ND	1.0	0.091	370			

Bold values indicate that detected concentration exceeds the HDOH Groundwater Action Level where groundwater is not a current or potential drinking water *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit.

ND = Not detected

				Sample ID	(Groundwate	r Samples)				
		MW-3 - W04			MW-4 - W05			MW-6 - W06		
	(P	rimary Samp	le)	(P	rimary Samp		(P	rimary Samp	le)	
			Method			Method			Method	
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	GAL
Analyte	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Volatile Organic Compounds	(EPA 8260B)								
1,4-Dichlorobenzene	ND	1.0	0.075	ND	1.0	0.075	ND	1.0	0.075	110
1,2-Dichlorobenzene	ND	1.0	0.061	ND	1.0	0.061	ND	1.0	0.061	100
Benzene	ND	1.0	0.057	ND	1.0	0.057	ND	1.0	0.057	1500
Toluene	ND	1.0	0.076	0.084	1.0	0.076	ND	1.0	0.076	400
Ethylbenzene	ND	1.0	0.061	ND	1.0	0.061	ND	1.0	0.061	300
m-Xylene & p-Xylene	ND	2.0	0.11	ND	2.0	0.11	ND	2.0	0.11	1000
o-Xylene	ND	1.0	0.080	ND	1.0	0.080	ND	1.0	0.080	1000
Semivolatile Compounds (EF	PA 8270C)									
Naphthalene	ND	2.1	0.076	ND	2.1	0.077	ND	2.1	0.076	210
2-Methylnaphthalene	ND	1.0	0.10	ND	1.0	0.10	ND	1.0	0.10	100
1-Methylnaphthalene	ND	0.31	0.14	ND	0.31	0.15	ND	0.31	0.14	100
Acenaphthylene	ND	0.41	0.038	ND	0.42	0.039	ND	0.41	0.038	300
Acenaphthene	ND	0.52	0.039	ND	0.52	0.040	ND	0.51	0.039	200
Fluorene	ND	0.31	0.038	ND	0.31	0.039	ND	0.31	0.038	300
Phenanthrene	ND	0.41	0.047	ND	0.42	0.048	ND	0.41	0.047	7.7
Anthracene	ND	0.21	0.042	ND	0.21	0.043	ND	0.20	0.042	0.73
Fluoranthene	ND	0.26	0.066	ND	0.26	0.067	ND	0.26	0.065	40
Pyrene	ND	0.31	0.055	ND	0.31	0.055	ND	0.31	0.054	2.0
Benzo[a]anthracene	ND	0.31	0.069	ND	0.31	0.070	ND	0.31	0.068	0.027
Chysene	ND	0.21	0.067	ND	0.21	0.068	ND	0.20	0.066	0.35
Benzo[b]fluoranthene	ND	0.41	0.057	ND	0.42	0.057	ND	0.41	0.056	0.092
Benzo[k]fluoranthene	ND	0.31	0.045	ND	0.31	0.046	ND	0.31	0.045	0.40
Benzo[a]pyrene	ND	0.21	0.074	ND	0.21	0.075	ND	0.20	0.073	0.014
Indeno[1,2,3-cd]pyrene	ND	0.31	0.059	ND	0.31	0.059	ND	0.31	0.058	0.092
Dibenz(a,h)anthracene	ND	0.31	0.054	ND	0.31	0.054	ND	0.31	0.053	0.52
Benzo[g,h,i]perylene	ND	0.31	0.060	ND	0.31	0.060	ND	0.31	0.059	0.10

Bold values indicate that detected concentration exceeds the HDOH Groundwater Action Level where groundwater is not a current or potential drinking water *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit.

ND = Not detected

				Sample ID	(Groundwate	r Samples)				
		MW-3 - W04			MW-4 - W05			MW-6 - W06		
	(P	rimary Samp	le)	(P	rimary Samp	le)	(P	rimary Samp	le)	
			Method			Method			Method	
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	GAL
Analyte	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Gasoline Range Organics (El										
HI Gasoline Range Organics	200	50	9.2	160	50	9.2	230	50	9.2	5000
Diesel Range Organics (EPA	8015B)									
HI Diesel Range Organics	ND	250	61	ND	250	62	ND	260	64	2500
HI Residual Range Organics	62	500	56	ND	510	57	67	530	59	2500
Polychlorinated Bipheynls (E	PA 8082)								_	
PCB - 1016	ND	0.56	0.050	ND	0.54	0.049	ND	0.58	0.052	2.0
PCB - 1221	ND	0.56	0.069	ND	0.54	0.067	ND	0.58	0.072	2.0
PCB - 1232	ND	0.56	0.046	ND	0.54	0.044	ND	0.58	0.048	2.0
PCB - 1242	ND	0.56	0.046	ND	0.54	0.044	ND	0.58	0.048	2.0
PCB - 1248	ND	0.56	0.079	ND	0.54	0.077	ND	0.58	0.082	2.0
PCB - 1254	ND	0.56	0.049	ND	0.54	0.048	ND	0.58	0.051	2.0
PCB - 1260	ND	0.56	0.043	ND	0.54	0.042	ND	0.58	0.045	2.0
RCRA Metals (EPA 6010B/74	71A)									
Arsenic	ND	60	4.7	ND	60	4.7	ND	60	4.7	69
Lead	ND	30	1.7	ND	30	1.7	ND	30	1.7	29
Barium	26	10	0.35	22	10	0.35	15	10	0.35	2000
Cadmium	ND	10	1.5	ND	10	1.5	ND	10	1.5	3.0
Chromium	ND	25	3.3	ND	25	3.3	ND	25	3.3	570
Selenium	ND	100	2.0	ND	100	2.0	ND	100	2.0	20
Silver	ND	20	0.85	ND	20	0.85	ND	20	0.85	1.0
Mercury	ND	0.20	0.041	ND	0.20	0.041	ND	0.20	0.041	2.1

Bold values indicate that detected concentration exceeds the HDOH Groundwater Action Level where groundwater is not a current or potential drinking water *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

	Sample ID	(Groundwate		
		MW-5 - W07		
	(P	rimary Samp	le)	
			Method	
	Sample	Reporting	Detection	HDOH
	Result	Limit	Limit	GAL
Analyte	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Volatile Organic Compounds	6 (EPA 8260B)		
Chloromethane	ND	5.0	0.18	290
Vinyl Chloride	ND	1.0	0.091	21
Bromomethane	ND	5.0	0.091	360
Chloroethane	ND	5.0	0.25	3.9
Trichlorofluoromethane	ND	1.0	0.069	NS
1,1-Dichloroethene	ND	1.0	0.066	3900
Methylene Chloride	ND	1.0	0.10	3100
trans-1,2-Dichloroethene	ND	1.0	0.051	2600
1,1-Dichloroethane	ND	1.0	0.049	47
cis-1,2-Dichloroethene	ND	1.0	0.067	4300
Chloroform	ND	1.0	0.057	74
1,1,1-Trichloroethane	ND	1.0	0.041	6000
Carbon tetrachloride	ND	1.0	0.10	31
1,2-Dichloroethane	ND	1.0	0.076	120
Trichloroethene	0.35	1.0	0.056	480
1,2-Dichloropropane	ND	1.0	0.14	100
Bromodichloromethane	ND	1.0	0.053	160
cis-1,3-Dichloropropene	ND	1.0	0.051	260
trans-1,3-Dichloropropene	ND	1.0	0.043	260
1,1,2-Trichloroethane	ND	1.0	0.062	300
Tetrachloroethene	ND	1.0	0.063	140
Dibromochloromethane	ND	1.0	0.32	270
Chlorobenzene	ND	1.0	0.086	160
Bromoform	ND	1.0	0.11	5100
Methyl tert-butyl ether	ND	1.0	0.062	1800
1,1,2,2-Tetrachloroethane	ND	1.0	0.062	160
1,3-Dichlorobenzene	ND	1.0	0.091	370

Bold values indicate that detected concentration exceeds the HDOH Groundwater Action Level where groundwater is not a current or potential drinking water *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit.

ND = Not detected

	Sample ID	(Groundwate		
		MW-5 - W07		
	(P	rimary Samp		
			Method	
	Sample	Reporting	Detection	HDOH
	Result	Limit	Limit	EAL
<u>Analyte</u>	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Volatile Organic Compounds	(EPA 8260B)		
1,4-Dichlorobenzene	ND	1.0	0.075	110
1,2-Dichlorobenzene	ND	1.0	0.061	100
Benzene	ND	1.0	0.057	1500
Toluene	ND	1.0	0.076	400
Ethylbenzene	ND	1.0	0.061	300
m-Xylene & p-Xylene	ND	2.0	0.11	1000
o-Xylene	ND	1.0	0.080	1000
Semivolatile Compounds (EF	PA 8270C)	·		
Naphthalene	ND	2.1	0.076	210
2-Methylnaphthalene	ND	1.0	0.10	100
1-Methylnaphthalene	ND	0.31	0.14	100
Acenaphthylene	ND	0.41	0.038	300
Acenaphthene	ND	0.51	0.039	200
Fluorene	ND	0.31	0.038	300
Phenanthrene	ND	0.41	0.047	7.7
Anthracene	ND	0.20	0.042	0.73
Fluoranthene	ND	0.26	0.065	40
Pyrene	ND	0.31	0.054	2.0
Benzo[a]anthracene	ND	0.31	0.068	0.027
Chysene	ND	0.20	0.066	0.35
Benzo[b]fluoranthene	ND	0.41	0.056	0.092
Benzo[k]fluoranthene	ND	0.31	0.045	0.40
Benzo[a]pyrene	ND	0.20	0.073	0.014
Indeno[1,2,3-cd]pyrene	ND	0.31	0.058	0.092
Dibenz(a,h)anthracene	ND	0.31	0.053	0.52
Benzo[g,h,i]perylene	ND	0.31	0.059	0.10

Bold values indicate that detected concentration exceeds the HDOH Groundwater Action Level where groundwater is not a current or potential drinking water *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

	Sample ID	(Groundwate MW-5 - W07		
	(P	rimary Samp		
			Method	
	Sample	Reporting	Detection	HDOH
	Result	Limit	Limit	EAL
Analyte	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Gasoline Range Organics (El				
HI Gasoline Range Organics	150	50	9.2	5000
Diesel Range Organics (EPA	8015B)			
HI Diesel Range Organics	ND	260	63	2500
HI Residual Range Organics	93	510	58	2500
Polychlorinated Bipheynls (E	PA 8082)		_	
PCB - 1016	ND	0.56	0.050	2.0
PCB - 1221	ND	0.56	0.069	2.0
PCB - 1232	ND	0.56	0.046	2.0
PCB - 1242	ND	0.56	0.046	2.0
PCB - 1248	ND	0.56	0.079	2.0
PCB - 1254	ND	0.56	0.049	2.0
PCB - 1260	ND	0.56	0.043	2.0
RCRA Metals (EPA 6010B/74	71A)			
Arsenic	5.6	60	4.7	69
Lead	ND	30	1.7	29
Barium	14	10	0.35	2000
Cadmium	ND	10	1.5	3.0
Chromium	6.9	25	3.3	570
Selenium	ND	100	2.0	20
Silver	ND	20	0.85	1.0
Mercury	ND	0.20	0.041	2.1

Bold values indicate that detected concentration exceeds the HDOH Groundwater Action Level where groundwater is not a current or potential drinking water *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

Table C-7: Laboratory Reanalysis of Immunoassay-Analyzed PCB Grid Samples Soil Sample Analytical Results Summary

	Sample ID (Soil Samples)													
		S002			S004			S005						
			Method			Method			Method	Regulator	/ Standard			
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH			
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL			
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)			
Polychlorina	ted Biphen	yls (EPA 8	082)											
PCB-1016	ND	0.0379	0.0136	ND	0.0478	0.0172	0.202	0.0481	0.0173	3.9	1.1			
PCB-1221	ND	0.0758	0.0161	ND	0.0957	0.0204	ND	0.0962	0.0205	0.14	1.1			
PCB-1232	ND	0.0379	0.00750	ND	0.0478	0.00947	ND	0.0481	0.00952	0.14	1.1			
PCB-1242	ND	0.0379	0.00318	ND	0.0478	0.00402	ND	0.0481	0.00404	0.22	1.1			
PCB-1248	ND	0.0379	0.00409	ND	0.0478	0.00417	ND	0.0481	0.00519	0.22	1.1			
PCB-1254	ND	0.0379	0.00364	ND	0.0478	0.00459	ND	0.0481	0.00462	0.22	1.1			
PCB-1260	17.3	1.89	0.795	5.14	0.478	0.201	706	48.1	20.2	0.22	1.1			

				Sample	e ID (Soil Sa	amples)						
		S006			S007			S022				
			Method			Method			Method	Regulatory	/ Standard	
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH	
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Polychlorina	Polychlorinated Biphenyls (EPA 8082)											
PCB-1016	ND	0.0377	0.0136	ND	0.0380	0.0137	ND	0.0340	0.0122	3.9	1.1	
PCB-1221	ND	0.0755	0.0161	ND	0.0760	0.0162	ND	0.0680	0.0145	0.14	1.1	
PCB-1232	ND	0.0377	0.00747	ND	0.0380	0.00753	ND	0.0340	0.00673	0.14	1.1	
PCB-1242	ND	0.0377	0.00317	ND	0.0380	0.00319	ND	0.0340	0.00286	0.22	1.1	
PCB-1248	ND	0.0377	0.00408	ND	0.0380	0.00411	ND	0.0340	0.00367	0.22	1.1	
PCB-1254	ND	0.0377	0.00362	ND	0.0380	0.00365	ND	0.0340	0.00327	0.22	1.1	
PCB-1260	94.5	7.55	3.17	161	19.0	7.98	58.6	6.80	6.80	0.22	1.1	

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

 Table C-7: Laboratory Reanalysis of Immunoassay-Analyzed PCB Grid Sample Results (Cont.)

 Soil Sample Analytical Results Summary

	S027			S028			S032				
			Method			Method			Method	Regulator	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls (EPA 8082)											
PCB-1016	ND	0.0469	0.0169	ND	0.0327	0.0169	ND	0.0391	0.0141	3.9	1.1
PCB-1221	ND	0.0939	0.0200	ND	0.0654	0.0200	ND	0.0781	0.0166	0.14	1.1
PCB-1232	ND	0.0469	0.00930	ND	0.0327	0.00930	ND	0.0391	0.00773	0.14	1.1
PCB-1242	ND	0.0469	0.00394	ND	0.0327	0.00394	ND	0.0391	0.00328	0.22	1.1
PCB-1248	ND	0.0469	0.00507	ND	0.0327	0.00507	ND	0.0391	0.00422	0.22	1.1
PCB-1254	ND	0.0469	0.00451	ND	0.0327	0.00451	ND	0.0391	0.00375	0.22	1.1
PCB-1260	2.88	0.469	0.197	325	32.7	0.197	0.828	0.0781	0.0328	0.22	1.1

	Sample ID (Soil Samples)										
	S042			S049			S051				
			Method			Method			Method	Regulator	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls (EPA 8082)											
PCB-1016	ND	0.0330	0.0119	ND	0.0316	0.0114	ND	0.0341	0.0123	3.9	1.1
PCB-1221	ND	0.0660	0.0141	ND	0.0633	0.0135	ND	0.0683	0.0145	0.14	1.1
PCB-1232	ND	0.0330	0.00653	ND	0.0316	0.00627	ND	0.0341	0.00676	0.14	1.1
PCB-1242	ND	0.0330	0.00277	ND	0.0316	0.00266	ND	0.0341	0.00287	0.22	1.1
PCB-1248	ND	0.0330	0.00356	ND	0.0316	0.00642	ND	0.0341	0.00369	0.22	1.1
PCB-1254	ND	0.0330	0.00317	ND	0.0316	0.00304	ND	0.0341	0.00328	0.22	1.1
PCB-1260	0.229	0.0330	0.0139	0.390	0.0316	0.0133	2.25	0.3410	0.143	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

		Sample ID (Soil Samples)										
		S053			S140			S141				
			Method			Method			Method	Regulator	/ Standard	
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH	
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Polychlorina	olychlorinated Biphenyls (EPA 8082)											
PCB-1016	ND	0.0324	0.0117	ND	0.0306	0.0110	ND	0.0308	0.0111	3.9	1.1	
PCB-1221	ND	0.0647	0.0138	ND	0.0612	0.0130	ND	0.0615	0.0131	0.14	1.1	
PCB-1232	ND	0.0324	0.00641	ND	0.0306	0.00606	ND	0.0308	0.00609	0.14	1.1	
PCB-1242	ND	0.0324	0.00272	ND	0.0306	0.00257	ND	0.0308	0.00258	0.22	1.1	
PCB-1248	ND	0.0324	0.00350	ND	0.0306	0.00330	ND	0.0308	0.00332	0.22	1.1	
PCB-1254	ND	0.0324	0.00311	ND	0.0306	0.00294	ND	0.0308	0.00295	0.22	1.1	
PCB-1260	0.220	0.0324	0.0136	77.8	6.12	2.57	18.0	1.54	0.646	0.22	1.1	

				Sample	e ID (Soil Sa	amples)					
		S142			S143			S144			
			Method			Method			Method	Regulator	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.0303	0.0109	ND	0.0328	0.0118	0.0598	0.0331	0.0119	3.9	1.1
PCB-1221	ND	0.0606	0.0129	ND	0.0656	0.0140	ND	0.0662	0.0141	0.14	1.1
PCB-1232	ND	0.0303	0.00600	ND	0.0328	0.00656	ND	0.0331	0.00656	0.14	1.1
PCB-1242	ND	0.0303	0.00255	ND	0.0328	0.00278	ND	0.0331	0.00278	0.22	1.1
PCB-1248	ND	0.0303	0.00327	ND	0.0328	0.00358	ND	0.0331	0.00358	0.22	1.1
PCB-1254	ND	0.0303	0.00391	ND	0.0328	0.00318	ND	0.0331	0.00318	0.22	1.1
PCB-1260	169	15.2	6.36	487	32.8	27.8	650	66.2	27.8	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples)						
		S145			S146			S147				
			Method			Method			Method	Regulator	/ Standard	
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH	
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Polychlorina	olychlorinated Biphenyls (EPA 8082)											
PCB-1016	ND	0.0330	0.0119	ND	0.0331	0.0119	ND	0.0330	0.0119	3.9	1.1	
PCB-1221	ND	0.0660	0.0141	ND	0.0662	0.0141	ND	0.0660	0.0141	0.14	1.1	
PCB-1232	ND	0.0330	0.00653	ND	0.0331	0.006563	ND	0.0330	0.00653	0.14	1.1	
PCB-1242	ND	0.0330	0.00277	ND	0.0331	0.00278	ND	0.0330	0.00277	0.22	1.1	
PCB-1248	ND	0.0330	0.00356	ND	0.0331	0.00358	ND	0.0330	0.00356	0.22	1.1	
PCB-1254	ND	0.0330	0.00317	ND	0.0331	0.00318	ND	0.0330	0.00317	0.22	1.1	
PCB-1260	250	33.0	13.9	250	6.62	2.78	70.9	6.60	2.77	0.22	1.1	

				Sample	e ID (Soil Sa	amples)					
		S151			S152			S154			
			Method			Method			Method	Regulatory	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.0366	0.0132	ND	0.0329	0.0118	ND	0.0331	0.0119	3.9	1.1
PCB-1221	ND	0.0733	0.0156	ND	0.0658	0.0140	ND	0.0662	0.0141	0.14	1.1
PCB-1232	ND	0.0366	0.00725	ND	0.0329	0.00651	ND	0.0331	0.00656	0.14	1.1
PCB-1242	ND	0.0366	0.00308	ND	0.0329	0.00276	ND	0.0331	0.00278	0.22	1.1
PCB-1248	ND	0.0366	0.00396	ND	0.0329	0.00356	ND	0.0331	0.00358	0.22	1.1
PCB-1254	ND	0.0366	0.00352	ND	0.0329	0.00316	ND	0.0331	0.00318	0.22	1.1
PCB-1260	490	36.6	15.4	94.4	6.5800	2.76	2.73	0.0331	0.139	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples)						
		S158			S159			S163				
			Method			Method			Method	Regulator	/ Standard	
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH	
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Polychlorina	olychlorinated Biphenyls (EPA 8082)											
PCB-1016	ND	0.0326	0.0117	ND	0.0355	0.0128	ND	0.0332	0.0120	3.9	1.1	
PCB-1221	ND	0.0651	0.0139	ND	0.0709	0.0151	ND	0.0664	0.0142	0.14	1.1	
PCB-1232	ND	0.0326	0.00645	ND	0.0355	0.00702	ND	0.0332	0.00658	0.14	1.1	
PCB-1242	ND	0.0326	0.00274	ND	0.0355	0.00298	ND	0.0332	0.00279	0.22	1.1	
PCB-1248	ND	0.0326	0.00352	ND	0.0355	0.00383	ND	0.0332	0.00359	0.22	1.1	
PCB-1254	ND	0.0326	0.00313	ND	0.0355	0.0034	ND	0.0332	0.00319	0.22	1.1	
PCB-1260	8.36	0.651	0.274	493	35.5	14.9	41.3	3.32	1.4	0.22	1.1	

				Sample	e ID (Soil Sa	amples)					
		S165			S170			S197			
			Method			Method			Method	Regulatory	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.0331	0.0119	ND	0.0353	0.0127	ND	0.0331	0.0119	3.9	1.1
PCB-1221	ND	0.0662	0.0141	ND	0.0707	0.0151	ND	0.0662	0.0141	0.14	1.1
PCB-1232	ND	0.0331	0.00656	ND	0.0353	0.00700	ND	0.0331	0.00656	0.14	1.1
PCB-1242	ND	0.0331	0.00278	ND	0.0353	0.00297	ND	0.0331	0.00278	0.22	1.1
PCB-1248	ND	0.0331	0.00358	ND	17.70	1.91	ND	0.0331	0.00358	0.22	1.1
PCB-1254	ND	0.0331	0.00318	ND	0.0353	0.00339	ND	0.0331	0.00318	0.22	1.1
PCB-1260	5.75	0.662	0.662	242	17.70	7.42	28.6	3.31	1.39	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

		Sample ID (Soil Samples)									
		S198			S199			S200			
			Method			Method			Method	Regulator	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	Polychlorinated Biphenyls (EPA 8082)										
PCB-1016	ND	0.0326	0.0117	ND	0.0321	0.00115	ND	0.0327	0.0118	3.9	1.1
PCB-1221	ND	0.0651	0.0139	ND	0.0641	0.0137	ND	0.0654	0.0139	0.14	1.1
PCB-1232	ND	0.0326	0.00645	ND	0.0321	0.00635	ND	0.0327	0.00647	0.14	1.1
PCB-1242	ND	0.0326	0.00274	ND	0.0321	0.00269	ND	0.0327	0.00275	0.22	1.1
PCB-1248	ND	0.0326	0.00352	ND	0.0321	0.00346	ND	0.0327	0.00353	0.22	1.1
PCB-1254	ND	0.0326	0.00313	ND	0.0321	0.00308	ND	0.0327	0.00314	0.22	1.1
PCB-1260	15.9	1.630	0.684	17.6	1.60	0.673	2.28	0.327	0.137	0.22	1.1

				Sample	e ID (Soil Sa	amples)		•			
		S210			S211			S218			
			Method			Method			Method	Regulatory	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.0325	0.0117	ND	0.0332	0.0120	ND	0.0333	0.0120	3.9	1.1
PCB-1221	ND	0.0649	0.0138	ND	0.0664	0.0142	ND	0.0667	0.0142	0.14	1.1
PCB-1232	ND	0.0325	0.00643	ND	0.0332	0.00658	ND	0.0333	0.00660	0.14	1.1
PCB-1242	ND	0.0325	0.00273	ND	0.0332	0.00279	ND	0.0333	0.00280	0.22	1.1
PCB-1248	ND	0.0325	0.00351	ND	0.0332	0.00359	ND	0.0333	0.00360	0.22	1.1
PCB-1254	ND	0.0325	0.00312	ND	0.0332	0.00319	ND	0.0333	0.00320	0.22	1.1
PCB-1260	1430	162	68.2	33.2	3.32	1.4	6.74	0.667	0.280	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples)						
		S219			S221			S228				
			Method			Method			Method	Regulator	y Standard	
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH	
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Polychlorina	olychlorinated Biphenyls (EPA 8082)											
PCB-1016	ND	0.0331	0.0119	ND	0.0331	0.0119	ND	0.0331	0.0119	3.9	1.1	
PCB-1221	ND	0.0662	0.0141	ND	0.0662	0.0141	ND	0.0662	0.0141	0.14	1.1	
PCB-1232	ND	0.0331	0.00656	ND	0.0331	0.00656	ND	0.0331	0.00656	0.14	1.1	
PCB-1242	ND	0.0331	0.00278	ND	0.0331	0.00278	ND	0.0331	0.00278	0.22	1.1	
PCB-1248	ND	0.0331	0.00358	ND	0.0331	0.00358	ND	0.0331	0.00358	0.22	1.1	
PCB-1254	ND	0.0331	0.00318	ND	0.0331	0.00318	ND	0.0331	0.00318	0.22	1.1	
PCB-1260	59.9	6.62	2.78	2.07	0.331	0.139	10.7	1.66	0.695	0.22	1.1	

				Sample	e ID (Soil Sa	amples)					
		S289			S294			S295			
			Method			Method			Method	Regulator	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.0330	0.0119	ND	0.0327	0.0118	ND	0.152	0.0548	3.9	1.1
PCB-1221	ND	0.0660	0.0141	ND	0.0654	0.0139	ND	0.304	0.0648	0.14	1.1
PCB-1232	ND	0.0330	0.00653	ND	0.0327	0.00647	ND	0.152	0.0301	0.14	1.1
PCB-1242	ND	0.0330	0.00277	ND	0.0327	0.00275	ND	0.152	0.0128	0.22	1.1
PCB-1248	ND	0.0330	0.00356	ND	0.0327	0.00353	ND	0.152	0.0164	0.22	1.1
PCB-1254	ND	0.0330	0.00317	ND	0.0327	0.00314	ND	0.152	0.0146	0.22	1.1
PCB-1260	0.421	0.0330	0.0139	1.37	0.163	0.686	135	15.2	6.39	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

Table C-8: Expanded PCB Grid Sample Results (May 27, 2010)Soil Sample Analytical Results Summary

				Sample	e ID (Soil Sa	amples)				ĺ	
		S329			S330			S331			
			Method			Method			Method	Regulator	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	Polychlorinated Biphenyls (EPA 8082)										
PCB-1016	ND	0.0325	0.01170	ND	0.0330	0.01190	ND	0.0331	0.01190	3.9	1.1
PCB-1221	ND	0.0649	0.01380	ND	0.0660	0.01410	ND	0.0662	0.01410	0.14	1.1
PCB-1232	ND	0.0325	0.00643	ND	0.0330	0.00653	ND	0.0331	0.00656	0.14	1.1
PCB-1242	ND	0.0325	0.00273	ND	0.0330	0.00277	ND	0.0331	0.00278	0.22	1.1
PCB-1248	ND	0.0325	0.00351	ND	0.0330	0.00356	ND	0.0331	0.00358	0.22	1.1
PCB-1254	ND	0.0325	0.00312	ND	0.0330	0.00317	ND	0.0331	0.00318	0.22	1.1
PCB-1260	0.422	0.0325	0.01360	1.87	0.1650	0.06930	5.82	0.6620	0.2780	0.22	1.1

				Sample	e ID (Soil Sa	amples)					
		S332			S333			S334			
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.0333	0.0120	ND	0.0332	0.0120	ND	0.0332	0.0120	3.9	1.1
PCB-1221	ND	0.0667	0.0142	ND	0.0664	0.0142	ND	0.0664	0.0142	0.14	1.1
PCB-1232	ND	0.0333	0.0066	ND	0.0332	0.00658	ND	0.0332	0.00658	0.14	1.1
PCB-1242	ND	0.0333	0.0028	ND	0.0332	0.00279	ND	0.0332	0.00279	0.22	1.1
PCB-1248	ND	0.0333	0.0036	ND	0.0332	0.00359	ND	0.0332	0.00359	0.22	1.1
PCB-1254	ND	0.0333	0.0032	ND	0.0332	0.00319	ND	0.0332	0.00319	0.22	1.1
PCB-1260	19.3	1.6700	0.700	0.168	0.0332	0.0140	2.66	0.3320	0.1400	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples <u>)</u>					
		S335			S336			S337			
			Method			Method			Method	Regulator	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	Polychlorinated Biphenyls (EPA 8082)										
PCB-1016	ND	0.0295	0.01060	ND	0.0331	0.01190	ND	0.0333	0.0120	3.9	1.1
PCB-1221	ND	0.0590	0.01260	ND	0.0662	0.01410	ND	0.0667	0.0142	0.14	1.1
PCB-1232	ND	0.0295	0.00584	ND	0.0331	0.00656	ND	0.0333	0.0066	0.14	1.1
PCB-1242	ND	0.0295	0.00248	ND	0.0331	0.00278	ND	0.0333	0.0028	0.22	1.1
PCB-1248	ND	0.0295	0.00319	ND	0.0331	0.00358	ND	0.0333	0.0036	0.22	1.1
PCB-1254	ND	0.0295	0.00283	ND	0.0331	0.00318	ND	0.0333	0.0032	0.22	1.1
PCB-1260	0.0679	0.0295	0.01240	0.47	0.0331	0.0139	0.312	0.0333	0.0140	0.22	1.1

				Sample	D (Soil Sa	amples)					
		S339			S340			S341			
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	lychlorinated Biphenyls (EPA 8082)										
PCB-1016	ND	0.0333	0.0120	ND	0.0332	0.012	ND	0.0332	0.012	3.9	1.1
PCB-1221	ND	0.0667	0.0142	ND	0.0664	0.0142	ND	0.0664	0.0142	0.14	1.1
PCB-1232	ND	0.0333	0.0066	ND	0.0332	0.00658	ND	0.0332	0.00658	0.14	1.1
PCB-1242	ND	0.0333	0.0028	ND	0.0332	0.00279	ND	0.0332	0.00279	0.22	1.1
PCB-1248	ND	0.0333	0.0036	ND	0.0332	0.00359	ND	0.0332	0.00359	0.22	1.1
PCB-1254	ND	0.0333	0.0032	ND	0.0332	0.00319	ND	0.0332	0.00319	0.22	1.1
PCB-1260	0.387	0.0333	0.014	2.12	0.3320	0.14	0.199	0.0332	0.014	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples)				ĺ	
		S342			S343			S344			
			Method			Method			Method	Regulatory	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Bipher	yls (EPA 8	082)								
PCB-1016	ND	0.0333	0.0120	ND	0.0333	0.012	ND	0.0333	0.012	3.9	1.1
PCB-1221	ND	0.0667	0.0142	ND	0.0667	0.0142	ND	0.0667	0.0142	0.14	1.1
PCB-1232	ND	0.0333	0.0066	ND	0.0333	0.0066	ND	0.0333	0.0066	0.14	1.1
PCB-1242	ND	0.0333	0.0028	ND	0.0333	0.0028	ND	0.0333	0.0028	0.22	1.1
PCB-1248	ND	0.0333	0.0036	ND	0.0333	0.00360	ND	0.0333	0.0036	0.22	1.1
PCB-1254	ND	0.0333	0.0032	ND	0.0333	0.0032	ND	0.0333	0.0032	0.22	1.1
PCB-1260	3.42	0.3330	0.14	11.2	1.6700	0.7	37.2	3.3300	1.4	0.22	1.1

				Sample	e ID (Soil Sa	amples)					
		S345			S346			S347			
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	lychlorinated Biphenyls (EPA 8082)										
PCB-1016	ND	0.0333	0.0120	ND	0.0330	0.0119	ND	0.0332	0.012	3.9	1.1
PCB-1221	ND	0.0667	0.0142	ND	0.0660	0.0141	ND	0.0664	0.0142	0.14	1.1
PCB-1232	ND	0.0333	0.0066	ND	0.0330	0.00653	ND	0.0332	0.00658	0.14	1.1
PCB-1242	ND	0.0333	0.0028	ND	0.0330	0.00277	ND	0.0332	0.00279	0.22	1.1
PCB-1248	ND	0.0333	0.0036	ND	0.0330	0.00356	ND	0.0332	0.00359	0.22	1.1
PCB-1254	ND	0.0333	0.0032	ND	0.0330	0.00317	ND	0.0332	0.00319	0.22	1.1
PCB-1260	22.1	3.3300	1.4	119	16.5000	6.93	5.67	0.6640	0.279	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples)				ĺ	
		S348			S349			S350			
			Method			Method			Method	Regulatory	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Bipher	yls (EPA 8	082)								
PCB-1016	ND	0.0333	0.0120	ND	0.0330	0.0119	ND	0.0332	0.012	3.9	1.1
PCB-1221	ND	0.0667	0.0142	ND	0.0660	0.0141	ND	0.0664	0.0142	0.14	1.1
PCB-1232	ND	0.0333	0.0066	ND	0.0330	0.00653	ND	0.0332	0.00658	0.14	1.1
PCB-1242	ND	0.0333	0.0028	ND	0.0330	0.00277	ND	0.0332	0.00279	0.22	1.1
PCB-1248	ND	0.0333	0.0036	ND	0.0330	0.00356	ND	0.0332	0.00359	0.22	1.1
PCB-1254	ND	0.0333	0.0032	ND	0.0330	0.00317	ND	0.0332	0.00319	0.22	1.1
PCB-1260	3.05	0.3330	0.14	19.7	1.6500	0.693	8.97	0.6640	0.279	0.22	1.1

				Sample	e ID (Soil Sa	amples)					
		S351			S352			S353			
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
<u>Analyte</u>	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.0330	0.0119	ND	0.0532	0.0191	ND	0.0333	0.012	3.9	1.1
PCB-1221	ND	0.0660	0.0141	ND	0.1060	0.0227	ND	0.0667	0.0142	0.14	1.1
PCB-1232	ND	0.0330	0.00653	ND	0.0532	0.0105	ND	0.0333	0.0066	0.14	1.1
PCB-1242	ND	0.0330	0.00277	ND	0.0532	0.00447	ND	0.0333	0.0028	0.22	1.1
PCB-1248	ND	0.0330	0.00356	ND	0.0532	0.00574	ND	0.0333	0.0036	0.22	1.1
PCB-1254	ND	0.0330	0.00317	ND	0.0532	0.00511	ND	0.0333	0.0032	0.22	1.1
PCB-1260	13.1	1.6500	0.693	723	53.2000	22.3	0.234	0.0333	0.014	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples)					
		S354			S355			S356			
			Method			Method			Method	Regulator	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	Polychlorinated Biphenyls (EPA 8082)										
PCB-1016	ND	0.0333	0.0120	ND	0.0333	0.012	ND	0.0332	0.012	3.9	1.1
PCB-1221	ND	0.0667	0.0142	ND	0.0667	0.0142	ND	0.0664	0.0142	0.14	1.1
PCB-1232	ND	0.0333	0.0066	ND	0.0333	0.0066	ND	0.0332	0.00658	0.14	1.1
PCB-1242	ND	0.0333	0.0028	ND	0.0333	0.0028	ND	0.0332	0.00279	0.22	1.1
PCB-1248	ND	0.0333	0.0036	ND	0.0333	0.00360	ND	0.0332	0.00359	0.22	1.1
PCB-1254	ND	0.0333	0.0032	ND	0.0333	0.0032	ND	0.0332	0.00319	0.22	1.1
PCB-1260	3.17	0.3330	0.14	1.01	0.1670	0.07	6.57	0.6640	0.279	0.22	1.1

				Sample	e ID (Soil Sa	amples)					
		S357			S358			S359			
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.0333	0.0120	ND	0.0331	0.0119	ND	0.0333	0.012	3.9	1.1
PCB-1221	ND	0.0667	0.0142	ND	0.0662	0.0141	ND	0.0667	0.0142	0.14	1.1
PCB-1232	ND	0.0333	0.0066	ND	0.0331	0.00656	ND	0.0333	0.0066	0.14	1.1
PCB-1242	ND	0.0333	0.0028	ND	0.0331	0.00278	ND	0.0333	0.0028	0.22	1.1
PCB-1248	ND	0.0333	0.0036	ND	0.0331	0.00358	ND	0.0333	0.0036	0.22	1.1
PCB-1254	ND	0.0333	0.0032	ND	0.0331	0.00318	ND	0.0333	0.0032	0.22	1.1
PCB-1260	4.48	0.6670	0.28	19.6	1.6600	0.695	62600	8330	3500	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples <u>)</u>						
		S360			S361			S362				
			Method			Method			Method	Regulator	/ Standard	
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH	
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Polychlorina	Polychlorinated Biphenyls (EPA 8082)											
PCB-1016	ND	0.0329	0.0118	ND	0.0332	0.012	ND	0.0333	0.012	3.9	1.1	
PCB-1221	ND	0.0658	0.014	ND	0.0664	0.0142	ND	0.0667	0.0142	0.14	1.1	
PCB-1232	ND	0.0329	0.00651	ND	0.0332	0.00658	ND	0.0333	0.0066	0.14	1.1	
PCB-1242	ND	0.0329	0.00276	ND	0.0332	0.00279	ND	0.0333	0.0028	0.22	1.1	
PCB-1248	ND	0.0329	0.00355	ND	0.0332	0.00359	ND	0.0333	0.0036	0.22	1.1	
PCB-1254	ND	0.0329	0.00316	ND	0.0332	0.00319	ND	0.0333	0.0032	0.22	1.1	
PCB-1260	0.724	0.6580	0.276	0.485	0.3320	0.14	1.37	0.3330	0.14	0.22	1.1	

				Sample	e ID (Soil Sa	amples)					
		S363			S364			S365			
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.0331	0.0119	ND	0.0333	0.012	ND	0.0333	0.012	3.9	1.1
PCB-1221	ND	0.0662	0.0141	ND	0.0667	0.0142	ND	0.0667	0.0142	0.14	1.1
PCB-1232	ND	0.0331	0.00656	ND	0.0333	0.0066	ND	0.0333	0.0066	0.14	1.1
PCB-1242	ND	0.0331	0.00278	ND	0.0333	0.0028	ND	0.0333	0.0028	0.22	1.1
PCB-1248	ND	0.0331	0.00358	ND	0.0333	0.00360	ND	0.0333	0.0036	0.22	1.1
PCB-1254	ND	0.0331	0.00318	ND	0.0333	0.0032	ND	0.0333	0.0032	0.22	1.1
PCB-1260	121	16.6000	6.95	13.1	1.6700	0.7	27	3.3300	1.4	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples)					
		S366			S367			S368			
			Method			Method			Method	Regulatory	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Bipher	nyls (EPA 8	082)								
PCB-1016	ND	0.0332	0.0120	ND	0.0333	0.012	ND	0.0333	0.012	3.9	1.1
PCB-1221	ND	0.0664	0.0142	ND	0.0667	0.0142	ND	0.0667	0.0142	0.14	1.1
PCB-1232	ND	0.0332	0.00658	ND	0.0333	0.0066	ND	0.0333	0.0066	0.14	1.1
PCB-1242	ND	0.0332	0.00279	ND	0.0333	0.0028	ND	0.0333	0.0028	0.22	1.1
PCB-1248	ND	0.0332	0.00359	ND	0.0333	0.00360	ND	0.0333	0.0036	0.22	1.1
PCB-1254	ND	0.0332	0.00319	ND	0.0333	0.0032	ND	0.0333	0.0032	0.22	1.1
PCB-1260	669	66.4000	27.9	16.9	1.6700	0.7	16.5	1.6700	0.7	0.22	1.1

				Sample	e ID (Soil Sa	amples)					
		S369			S370			S371			
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.0332	0.0120	ND	0.0332	0.012	ND	0.0333	0.012	3.9	1.1
PCB-1221	ND	0.0664	0.0142	ND	0.0664	0.0142	ND	0.0667	0.0142	0.14	1.1
PCB-1232	ND	0.0332	0.00658	ND	0.0332	0.00658	ND	0.0333	0.0066	0.14	1.1
PCB-1242	ND	0.0332	0.00279	ND	0.0332	0.00279	ND	0.0333	0.0028	0.22	1.1
PCB-1248	ND	0.0332	0.00359	ND	0.0332	0.00359	ND	0.0333	0.0036	0.22	1.1
PCB-1254	ND	0.0332	0.00319	ND	0.0332	0.00319	ND	0.0333	0.0032	0.22	1.1
PCB-1260	3.75	0.3320	0.14	1.07	0.1660	0.0698	2.02	0.1670	0.07	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples)					
		S372			S373			S377			
			Method			Method			Method	Regulator	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Bipher	yls (EPA 8	082)								
PCB-1016	ND	0.0330	0.0119	ND	0.0332	0.012	ND	0.0330	0.0119	3.9	1.1
PCB-1221	ND	0.0660	0.0141	ND	0.0664	0.0142	ND	0.0660	0.0141	0.14	1.1
PCB-1232	ND	0.0330	0.00653	ND	0.0332	0.00658	ND	0.0330	0.00653	0.14	1.1
PCB-1242	ND	0.0330	0.00277	ND	0.0332	0.00279	ND	0.0330	0.00277	0.22	1.1
PCB-1248	ND	0.0330	0.00356	ND	0.0332	0.00359	ND	0.0330	0.00356	0.22	1.1
PCB-1254	ND	0.0330	0.00317	ND	0.0332	0.00319	ND	0.0330	0.00317	0.22	1.1
PCB-1260	0.912	0.1650	0.0693	30.7	3.3200	1.4	3.28	0.3300	0.139	0.22	1.1

				Sample	D (Soil Sa	amples)					
		S375			S376			S377			
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	d Biphenyls (EPA 8082)									
PCB-1016	ND	0.0333	0.0120	ND	0.0332	0.012	ND	0.0333	0.012	3.9	1.1
PCB-1221	ND	0.0667	0.0142	ND	0.0664	0.0142	ND	0.0667	0.0142	0.14	1.1
PCB-1232	ND	0.0333	0.0066	ND	0.0332	0.00658	ND	0.0333	0.0066	0.14	1.1
PCB-1242	ND	0.0333	0.0028	ND	0.0332	0.00279	ND	0.0333	0.0028	0.22	1.1
PCB-1248	ND	0.0333	0.0036	ND	0.0332	0.00359	ND	0.0333	0.0036	0.22	1.1
PCB-1254	ND	0.0333	0.0032	ND	0.0332	0.00319	ND	0.0333	0.0032	0.22	1.1
PCB-1260	8.53	0.6670	0.28	0.252	0.0332	0.014	1.61	0.1670	0.07	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples)					
		S378			S379			S380			
			Method			Method			Method	Regulatory	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Bipher	yls (EPA 8	082)								
PCB-1016	ND	0.0332	0.0120	ND	0.0333	0.012	ND	0.6670	0.24	3.9	1.1
PCB-1221	ND	0.0664	0.0142	ND	0.0667	0.0142	ND	1.3300	0.284	0.14	1.1
PCB-1232	ND	0.0332	0.00658	ND	0.0333	0.0066	ND	0.6670	0.132	0.14	1.1
PCB-1242	ND	0.0332	0.00279	ND	0.0333	0.0028	ND	0.6670	0.056	0.22	1.1
PCB-1248	ND	0.0332	0.00359	ND	0.0333	0.00360	ND	0.6670	0.072	0.22	1.1
PCB-1254	ND	0.0332	0.00319	ND	0.0333	0.0032	ND	0.6670	0.064	0.22	1.1
PCB-1260	7.40	0.6640	0.279	0.843	0.1670	0.07	4.50	0.6670	0.28	0.22	1.1

				Sample	e ID (Soil Sa	amples)					
		S381			S382			S383			
			Method			Method			Method	Regulatory	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.3330	0.1200	ND	0.1670	0.06	ND	0.3330	0.12	3.9	1.1
PCB-1221	ND	0.6670	0.142	ND	0.3330	0.071	ND	0.6670	0.142	0.14	1.1
PCB-1232	ND	0.3330	0.066	ND	0.1670	0.033	ND	0.3330	0.066	0.14	1.1
PCB-1242	ND	0.3330	0.028	ND	0.1670	0.014	ND	0.3330	0.028	0.22	1.1
PCB-1248	ND	0.3330	0.036	ND	0.1670	0.01800	ND	0.3330	0.036	0.22	1.1
PCB-1254	ND	0.3330	0.032	ND	0.1670	0.016	ND	0.3330	0.032	0.22	1.1
PCB-1260	2.92	0.3330	0.14	0.996	0.1670	0.07	2.99	0.3330	0.14	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples)					
		S384			S385			S386			
			Method			Method			Method	Regulatory	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ed Biphenyls (EPA 8082)										
PCB-1016	ND	0.0664	0.0239	ND	0.3320	0.12	ND	0.0333	0.012	3.9	1.1
PCB-1221	ND	0.1330	0.0283	ND	0.6640	0.142	ND	0.0667	0.0142	0.14	1.1
PCB-1232	ND	0.0664	0.0132	ND	0.3320	0.0658	ND	0.0333	0.0066	0.14	1.1
PCB-1242	ND	0.0664	0.00558	ND	0.3320	0.0279	ND	0.0333	0.0028	0.22	1.1
PCB-1248	ND	0.0664	0.00718	ND	0.3320	0.03590	ND	0.0333	0.0036	0.22	1.1
PCB-1254	ND	0.0664	0.00638	ND	0.3320	0.0319	ND	0.0333	0.0032	0.22	1.1
PCB-1260	0.524	0.0664	0.0279	2.64	0.3320	0.14	0.442	0.0333	0.014	0.22	1.1

	Sample	ID (Soil Sa	amples)		
		S388			
			Method	Regulatory	/ Standard
	Sample	Reporting	Detection	EPA	HDOH
_	Result	Limit	Limit	RSL	EAL
<u>Analyte</u>	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)		
PCB-1016	ND	0.0333	0.0120	3.9	1.1
PCB-1221	ND	0.0667	0.0142	0.14	1.1
PCB-1232	ND	0.0333	0.0066	0.14	1.1
PCB-1242	ND	0.0333	0.0028	0.22	1.1
PCB-1248	ND	0.0333	0.0036	0.22	1.1
PCB-1254	ND	0.0333	0.0032	0.22	1.1
PCB-1260	0.312	0.0333	0.014	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

Table C-9: Expanded PCB Grid Sample Results (Sept 1, 2010)Soil Sample Analytical Results Summary

				Sample	e ID (Soil Sa	amples)					
		S052			S218			S269			
			Method			Method			Method	Regulator	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Bipher	yls (EPA 8	082)								
PCB-1016	ND	0.0094	0.0030	ND	0.0097	0.0031	ND	0.0096	0.0031	3.9	1.1
PCB-1221	ND	0.0094	0.0075	ND	0.0097	0.0077	ND	0.0096	0.0077	0.14	1.1
PCB-1232	ND	0.0094	0.0065	ND	0.0097	0.0068	ND	0.0096	0.0067	0.14	1.1
PCB-1242	ND	0.0094	0.002	ND	0.0097	0.002	ND	0.0096	0.002	0.22	1.1
PCB-1248	ND	0.0094	0.0012	ND	0.0097	0.00130	ND	0.0096	0.0012	0.22	1.1
PCB-1254	ND	0.0094	0.002	ND	0.0097	0.002	ND	0.0096	0.002	0.22	1.1
PCB-1260	0.12	0.0094	0.0028	12	0.1900	0.058	19	0.9600	0.29	0.22	1.1

				Sample	ID (Soil Sa	amples)		•			
		S307			S374			S388			
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.0099	0.0032	ND	0.0098	0.0031	ND	0.0099	0.0032	3.9	1.1
PCB-1221	ND	0.0099	0.0079	ND	0.0098	0.0079	ND	0.0099	0.0079	0.14	1.1
PCB-1232	ND	0.0099	0.0069	ND	0.0098	0.0069	ND	0.0099	0.0069	0.14	1.1
PCB-1242	ND	0.0099	0.0021	ND	0.0098	0.0021	ND	0.0099	0.0021	0.22	1.1
PCB-1248	ND	0.0099	0.0013	ND	0.0098	0.00130	ND	0.0099	0.0013	0.22	1.1
PCB-1254	ND	0.0099	0.0021	ND	0.0098	0.0021	ND	0.0099	0.0021	0.22	1.1
PCB-1260	1	0.0200	0.0059	4.10	0.0980	0.029	0.83	0.0200	0.0059	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples)					
		S389			S390			S391			
			Method			Method			Method	Regulator	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Bipher	nyls (EPA 8	082)								
PCB-1016	ND	0.9600	0.3100	ND	0.0098	0.0031	ND	0.0095	0.003	3.9	1.1
PCB-1221	ND	0.9600	0.77	ND	0.0098	0.0079	ND	0.0095	0.0076	0.14	1.1
PCB-1232	ND	0.9600	0.67	ND	0.0098	0.0069	ND	0.0095	0.0067	0.14	1.1
PCB-1242	ND	0.9600	0.2	ND	0.0098	0.0021	ND	0.0095	0.002	0.22	1.1
PCB-1248	ND	0.9600	0.12	ND	0.0098	0.00130	ND	0.0095	0.0012	0.22	1.1
PCB-1254	ND	0.9600	0.2	ND	0.0098	0.0021	ND	0.0095	0.002	0.22	1.1
PCB-1260	13	0.9600	0.29	0.52	0.0098	0.003	0.048	0.0095	0.0029	0.22	1.1

				Sample	D (Soil Sa	amples)		•			
		S392			S393			S394			
			Method			Method			Method	Regulatory	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.0460	0.0150	ND	4.7000	1.5	ND	0.9700	0.31	3.9	1.1
PCB-1221	ND	0.0460	0.037	ND	4.7000	3.8	ND	0.9700	0.78	0.14	1.1
PCB-1232	ND	0.0460	0.032	ND	4.7000	3.3	ND	0.9700	0.68	0.14	1.1
PCB-1242	ND	0.0460	0.0097	ND	4.7000	0.99	ND	0.9700	0.2	0.22	1.1
PCB-1248	ND	0.0460	0.006	ND	4.7000	0.61000	ND	0.9700	0.13	0.22	1.1
PCB-1254	ND	0.0460	0.0097	ND	4.7000	0.99	ND	0.9700	0.2	0.22	1.1
PCB-1260	1.5	0.0460	0.014	74	4.7000	1.4	47	0.9700	0.29	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples)					
		S395			S396			S397			
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	1.0000	0.3200	ND	0.9700	0.31	ND	0.0950	0.031	3.9	1.1
PCB-1221	ND	1.0000	0.8	ND	0.9700	0.78	ND	0.0950	0.076	0.14	1.1
PCB-1232	ND	1.0000	0.7	ND	0.9700	0.68	ND	0.0950	0.067	0.14	1.1
PCB-1242	ND	1.0000	0.21	ND	0.9700	0.2	ND	0.0950	0.02	0.22	1.1
PCB-1248	ND	1.0000	0.13	ND	0.9700	0.13000	ND	0.0950	0.012	0.22	1.1
PCB-1254	ND	1.0000	0.21	ND	0.9700	0.2	ND	0.0950	0.02	0.22	1.1
PCB-1260	23	1.0000	0.3	19	0.9700	0.29	10	0.1900	0.057	0.22	1.1

				Sample	ID (Soil Sa	amples)		•			
		S398			S399			S400			
			Method			Method			Method	Regulatory	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.0950	0.0310	ND	0.9700	0.31	ND	1.9000	0.61	3.9	1.1
PCB-1221	ND	0.0950	0.076	ND	0.9700	0.78	ND	1.9000	1.5	0.14	1.1
PCB-1232	ND	0.0950	0.067	ND	0.9700	0.68	ND	1.9000	1.3	0.14	1.1
PCB-1242	ND	0.0950	0.02	ND	0.9700	0.2	ND	1.9000	0.4	0.22	1.1
PCB-1248	ND	0.0950	0.012	ND	0.9700	0.13000	ND	1.9000	0.25	0.22	1.1
PCB-1254	ND	0.0950	0.02	ND	0.9700	0.2	ND	1.9000	0.4	0.22	1.1
PCB-1260	4.5	0.0950	0.029	14	0.9700	0.29	74	1.9000	0.57	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples)					
		S401			S403			S404			
			Method			Method			Method	Regulatory	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Bipher	nyls (EPA 8	082)								
PCB-1016	ND	0.9800	0.3100	ND	0.0960	0.031	ND	0.0097	0.0031	3.9	1.1
PCB-1221	ND	0.9800	0.78	ND	0.0960	0.077	ND	0.0097	0.0078	0.14	1.1
PCB-1232	ND	0.9800	0.68	ND	0.0960	0.068	ND	0.0097	0.0068	0.14	1.1
PCB-1242	ND	0.9800	0.21	ND	0.0960	0.02	ND	0.0097	0.002	0.22	1.1
PCB-1248	ND	0.9800	0.13	ND	0.0960	0.01300	ND	0.0097	0.0013	0.22	1.1
PCB-1254	ND	0.9800	0.21	ND	0.0960	0.02	ND	0.0097	0.002	0.22	1.1
PCB-1260	19	0.9800	0.29	7.7	0.0960	0.029	0.27	0.0097	0.0029	0.22	1.1

				Sample	e ID (Soil Sa	amples)					
		S405			S406			S407			
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.0094	0.0030	ND	0.0095	0.003	ND	0.0094	0.003	3.9	1.1
PCB-1221	ND	0.0094	0.0075	ND	0.0095	0.0076	ND	0.0094	0.0075	0.14	1.1
PCB-1232	ND	0.0094	0.0066	ND	0.0095	0.0067	ND	0.0094	0.0066	0.14	1.1
PCB-1242	ND	0.0094	0.002	ND	0.0095	0.002	ND	0.0094	0.002	0.22	1.1
PCB-1248	ND	0.0094	0.0012	ND	0.0095	0.00120	ND	0.0094	0.0012	0.22	1.1
PCB-1254	ND	0.0094	0.002	ND	0.0095	0.002	ND	0.0094	0.002	0.22	1.1
PCB-1260	1.5	0.0470	0.014	0.17	0.0095	0.0029	0.29	0.0094	0.0028	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples)				ĺ	
		S408			S410			S412			
			Method			Method			Method	Regulator	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Bipher	yls (EPA 8	082)								
PCB-1016	ND	0.0098	0.0031	ND	0.0094	0.003	ND	0.0095	0.003	3.9	1.1
PCB-1221	ND	0.0098	0.0078	ND	0.0094	0.0076	ND	0.0095	0.0076	0.14	1.1
PCB-1232	ND	0.0098	0.0069	ND	0.0094	0.0066	ND	0.0095	0.0066	0.14	1.1
PCB-1242	ND	0.0098	0.0021	ND	0.0094	0.002	ND	0.0095	0.002	0.22	1.1
PCB-1248	ND	0.0098	0.0013	ND	0.0094	0.00120	ND	0.0095	0.0012	0.22	1.1
PCB-1254	ND	0.0098	0.0021	ND	0.0094	0.002	ND	0.0095	0.002	0.22	1.1
PCB-1260	0.15	0.0098	0.0029	0.1	0.0094	0.0028	2.8	0.0470	0.014	0.22	1.1

				Sample	ID (Soil Sa	amples)					
		S413			S415			S416			
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.0097	0.0031	ND	0.0094	0.003	ND	0.0096	0.0031	3.9	1.1
PCB-1221	ND	0.0097	0.0078	ND	0.0094	0.0075	ND	0.0096	0.0077	0.14	1.1
PCB-1232	ND	0.0097	0.0068	ND	0.0094	0.0066	ND	0.0096	0.0067	0.14	1.1
PCB-1242	ND	0.0097	0.002	ND	0.0094	0.002	ND	0.0096	0.002	0.22	1.1
PCB-1248	ND	0.0097	0.0013	ND	0.0094	0.00120	ND	0.0096	0.0012	0.22	1.1
PCB-1254	ND	0.0097	0.002	ND	0.0094	0.002	ND	0.0096	0.002	0.22	1.1
PCB-1260	30	1.9000	0.58	700	19.0000	5.6	1.6	0.0480	0.014	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	e ID (Soil Sa	amples)					
		S417			S418			S419			
			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Bipher	yls (EPA 8	082)								
PCB-1016	ND	0.0096	0.0031	ND	0.0093	0.003	ND	0.0098	0.0031	3.9	1.1
PCB-1221	ND	0.0096	0.0077	ND	0.0093	0.0075	ND	0.0098	0.0078	0.14	1.1
PCB-1232	ND	0.0096	0.0067	ND	0.0093	0.0065	ND	0.0098	0.0069	0.14	1.1
PCB-1242	ND	0.0096	0.002	ND	0.0093	0.002	ND	0.0098	0.0021	0.22	1.1
PCB-1248	ND	0.0096	0.0012	ND	0.0093	0.00120	ND	0.0098	0.0013	0.22	1.1
PCB-1254	ND	0.0096	0.002	ND	0.0093	0.002	ND	0.0098	0.0021	0.22	1.1
PCB-1260	1.2	0.0190	0.0058	17	0.9300	0.28	0.37	0.0098	0.0029	0.22	1.1

				Sample	e ID (Soil Sa	amples)					
		S420			S421			S422			
			Method			Method			Method	Regulatory	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)								
PCB-1016	ND	0.0096	0.0031	ND	0.0096	0.0031	ND	0.0093	0.003	3.9	1.1
PCB-1221	ND	0.0096	0.0077	ND	0.0096	0.0077	ND	0.0093	0.0074	0.14	1.1
PCB-1232	ND	0.0096	0.0067	ND	0.0096	0.0067	ND	0.0093	0.0065	0.14	1.1
PCB-1242	ND	0.0096	0.002	ND	0.0096	0.002	ND	0.0093	0.0019	0.22	1.1
PCB-1248	ND	0.0096	0.0012	ND	0.0096	0.00120	ND	0.0093	0.0012	0.22	1.1
PCB-1254	ND	0.0096	0.002	ND	0.0096	0.002	ND	0.0093	0.0019	0.22	1.1
PCB-1260	ND	0.0096	0.0029	0.5	0.0096	0.0029	3	0.0460	0.014	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

				Sample	ID (Soil Sa	amples)					
		S423			S424			S425			
			Method			Method			Method	Regulatory	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ated Biphenyls (EPA 8082)		082)								
PCB-1016	ND	0.0095	0.0030	ND	0.0098	0.0031	ND	0.0094	0.003	3.9	1.1
PCB-1221	ND	0.0095	0.0076	ND	0.0098	0.0078	ND	0.0094	0.0075	0.14	1.1
PCB-1232	ND	0.0095	0.0067	ND	0.0098	0.0069	ND	0.0094	0.0066	0.14	1.1
PCB-1242	ND	0.0095	0.002	ND	0.0098	0.0021	ND	0.0094	0.002	0.22	1.1
PCB-1248	ND	0.0095	0.0012	ND	0.0098	0.00130	ND	0.0094	0.0012	0.22	1.1
PCB-1254	ND	0.0095	0.002	ND	0.0098	0.0021	ND	0.0094	0.002	0.22	1.1
PCB-1260	2.2	0.0480	0.014	0.36	0.0098	0.0029	2.1	0.0470	0.014	0.22	1.1

	Sample	ID (Soil Sa	amples)		
		S426			
			Method	Regulatory	/ Standard
	Sample	Reporting	Detection	EPA	HDOH
_	Result	Limit	Limit	RSL	EAL
<u>Analyte</u>	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlorina	ted Biphen	yls (EPA 8	082)		
PCB-1016	ND	0.0096	0.0031	3.9	1.1
PCB-1221	ND	0.0096	0.0077	0.14	1.1
PCB-1232	ND	0.0096	0.0067	0.14	1.1
PCB-1242	ND	0.0096	0.002	0.22	1.1
PCB-1248	ND	0.0096	0.0013	0.22	1.1
PCB-1254	ND	0.0096	0.002	0.22	1.1
PCB-1260	5	0.0960	0.029	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

Table C-10: Concrete Decision Unit PCB Results Concrete Sample Analytical Results Summary

					9	Sample ID (Soil Samp	les)					Ι	
	Conc	rete DU 7 -	S427	Cond	rete DU 6 -	S428	Con	crete DU 5	- S429	Conc	rete DU 4 -	S430		
			Method			Method			Method			Method	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlori	nated Biph	enyls (EPA	8082)											
PCB-1016	ND	0.0094	0.003	ND	0.0095	0.0031	ND	0.0094	0.0030	ND	0.0099	0.0032	3.9	1.1
PCB-1221	ND	0.0094	0.0075	ND	0.0095	0.0076	ND	0.0094	0.0075	ND	0.0099	0.0079	0.14	1.1
PCB-1232	ND	0.0094	0.0066	ND	0.0095	0.0067	ND	0.0094	0.0066	ND	0.0099	0.0069	0.14	1.1
PCB-1242	ND	0.0094	0.002	ND	0.0095	0.002	ND	0.0094	0.002	ND	0.0099	0.0021	0.22	1.1
PCB-1248	ND	0.0094	0.00120	ND	0.0095	0.0012	ND	0.0094	0.0012	ND	0.0099	0.00130	0.22	1.1
PCB-1254	ND	0.0094	0.002	ND	0.0095	0.002	ND	0.0094	0.002	ND	0.0099	0.0021	0.22	1.1
PCB-1260	0.1	0.0094	0.0028	0.61	0.0095	0.0029	84	1.9000	0.56	67	2.0000	0.59	0.22	1.1

				Samp	le ID (Soil S	Samples)					
	Conc	rete DU 3 -	S431	Cond	rete DU 2 -	S432	Concre	te DU 1 - Co	oncrete 01		
			Method			Method			Method	Regulator	/ Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Polychlori	nated Biphenyls (EPA 8082)										
PCB-1016	ND	0.01	0.0032	ND	0.0094	0.0030	0.131	0.0099	0.0032	3.9	1.1
PCB-1221	ND	0.01	0.008	ND	0.0094	0.0075	ND	0.0099	0.0079	0.14	1.1
PCB-1232	ND	0.01	0.007	ND	0.0094	0.0066	ND	0.0099	0.0069	0.14	1.1
PCB-1242	ND	0.01	0.0021	ND	0.0094	0.002	ND	0.0099	0.0021	0.22	1.1
PCB-1248	ND	0.01	0.0013	ND	0.0094	0.0012	ND	0.0099	0.00130	0.22	1.1
PCB-1254	ND	0.01	0.0021	ND	0.0094	0.002	ND	0.0099	0.0021	0.22	1.1
PCB-1260	68	2.00	0.6	0.36	0.0094	0.0028	225	2.0000	0.59	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit. ND = Not detected

Table C-11: Pesticides Sample Results Soil Sample Analytical Results Summary

oon oampie Analytical Nea				Sample	e ID (Soil Sa	amples)]	
		PadPest-01			PadPest-02	2		PadPest-03	3	1	
			Method			Method			Method	Regulatory	v Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	RSL	EAL
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
ORGANOCHLORINE PEST	TCIDES (EF	PA 8081A)									
4,4'-DDD	ND	1.9	0.14	4.9	2	0.15	ND	1.9	0.14	2000	2000
4,4'-DDE	ND	1.9	0.13	15	2	0.14	0.13	1.9	0.13	1400	1400
4,4'-DDT	ND	1.9	0.15	24	2	0.15	0.86	1.9	0.14	1700	1700
Aldrin	ND	0.96	0.21	ND	0.99	0.22	ND	0.94	0.21	29	2.9
alpha-BHC	ND	0.96	0.26	ND	0.99	0.28	ND	0.94	0.26	77	NS
beta-BHC	ND	0.96	0.31	ND	0.99	0.32	ND	0.94	0.31	270	NS
delta-BHC	ND	0.96	0.14	ND	0.99	0.15	ND	0.94	0.14	NS	NS
Dieldrin	ND	1.9	0.11	ND	2	0.12	ND	1.9	0.11	30	7.4
Endosulfan I	ND	0.96	0.098	ND	0.99	0.1	ND	0.94	0.096	370,000	120
Endosulfan II	ND	1.9	0.16	ND	2	0.17	ND	1.9	0.16	370,000	120
Endosulfan sulfate	ND	1.9	0.18	ND	2	0.18	ND	1.9	0.17	NS	NS
Endrin	ND	1.9	0.16	ND	2	0.16	ND	1.9	0.15	180,000	60
Endrin aldehyde	ND	1.9	0.19	ND	2	0.2	ND	1.9	0.19	NS	NS
Endrin ketone	ND	1.9	0.25	ND	2	0.26	ND	1.9	0.24	NS	NS
gamma-BHC (Lindane)	ND	0.96	0.29	ND	0.99	0.3	ND	0.94	0.28	520	90
Heptachlor	ND	0.96	0.44	ND	0.99	0.46	ND	0.94	0.44	110	110
Heptachlor epoxide	ND	0.96	0.0029	ND	0.99	0.003	ND	0.94	0.0028	53	46
Methoxychlor	ND	9.6	0.25	ND	9.9	0.26	ND	9.4	0.24	9,200,000	26,000
Chlordane (technical)	ND	9.6	1.3	ND	9.9	1.4	ND	9.4	1.3	1,600	16,000
Toxaphene	ND	96	9.6	ND	99	9.9	ND	94	9.4	440	440

Italics values are estimated as the analyte was detected below the reporting limit but above the method detection limit.

ND = Not detected

NS = No standard

Appendix D Analytical Laboratory Reports

The analytical laboratory reports have been included in the CD attached to this report.

Appendix E RSD Evaluation Tables

Table E-1: PCB Grid Sampling RPD Evaluation

	Sample F	Results (Soil San	nples)]			
		PCBs					
			Field	Statistical	Statistical		
		Field Duplicate	Duplicate	Evaluation	Evaluation		
	Primary Sample	Sample (RaPID	Sample	of RaPID	Primary Assay		
	(RaPID Assay)	Assay)	(EPA 8082)	Assay	and 8082 Results	Regulatory	/ Standard
	Sample	Sample	Sample	Relative	Relative	EPA	HDOH
	Result	Result	Result	Percent	Percent	RSL	EAL
Sample ID	(mg/kg)	(mg/kg)	(mg/kg)	Difference	Difference	(mg/kg)	(mg/kg)
S001/S002	0.98	2.64	10	92%	164%	0.22	1.1
S012/S013	ND	ND	1.3			0.22	1.1
S023/S024	0.08	0.13	2.3	48%	186%	0.22	1.1
S034/S035	0.06	0.09	0.35	35%	140%	0.22	1.1
S045/S046	ND	ND	2.1			0.22	1.1
S056/S057	0.03	0.06	2.4	45%	194%	0.22	1.1
S067/S068	ND	ND	9.9			0.22	1.1
S078/S079	0.18	0.11	0.18	46%	1%	0.22	1.1
S089/S090	0.05	0.13	0.48	88%	161%	0.22	1.1
S100/S101	0.28	0.09	0.011	100%	185%	0.22	1.1
S138/S139	1.44	na	17	NA	169%	0.22	1.1
S149/S150	28.55 Hi	na	440	NA	176%	0.22	1.1
S160/S161	1.98	na	21	NA	165%	0.22	1.1
S171/S172	2.41	2.01	14	18%	141%	0.22	1.1
S182/S183	0.16	0.04	0.096	115%	48%	0.22	1.1
S193/S194	3.66	2.70	16	30%	125%	0.22	1.1
S204/S205	0.43	0.49	0.87	13%	68%	0.22	1.1
S226/S227	30.85 Hi	31.12 Hi	380	1%	170%	0.22	1.1
S237/S238	3.44	na	6.2	NA	57%	0.22	1.1
S248/S249	4.49	na	68	NA	175%	0.22	1.1
S266	0.4665		6.5	NA	173%	0.22	1.1
S267	0.4603		2.4	NA	136%	0.22	1.1
S268	1.6351		17	NA	165%	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit.

ND = Not detected

na = Not applicable; duplicate was not analyzed by RaPID Assay Kit

NA = Not applicable; duplicate was not collected

Hi = Value detected above the calibrated range of the RaPID Assay Kit

Table E-1: PCB Grid Sampling (cont.) RPD Evaluation

	Sample F	Results (Soil San	nples)	ו			
		PCBs					
			Field	Statistical	Statistical		
		Field Duplicate	Duplicate	Evaluation	Evaluation		
	Primary Sample	Sample (RaPID	Sample	of RaPID	Primary Assay		
	(RaPID Assay)	Assay)	(EPA 8082)	Assay	and 8082 Results	Regulator	/ Standard
	Sample	Sample	Sample	Relative	Relative	EPA	HDOH
	Result	Result	Result	Percent	Percent	RSL	EAL
Sample ID	(mg/kg)	(mg/kg)	(mg/kg)	Difference	Difference	(mg/kg)	(mg/kg)
S269	1.5745		23	NA	174%	0.22	1.1
S270/S271	3.57	0.80	6.9	127%	64%	0.22	1.1
S273	0.2553		1.4	NA	138%	0.22	1.1
S274	2.0529		27	NA	172%	0.22	1.1
S275	0.8923		4.4	NA	133%	0.22	1.1
S280	0.1625		0.51	NA	103%	0.22	1.1
S281/S282	0.10	0.23	0.60	82%	145%	0.22	1.1
S284	0.7928		6.8	NA	158%	0.22	1.1
S285	0.1918		0.26	NA	30%	0.22	1.1
S286	1.2087		13	NA	166%	0.22	1.1
S287	8.2666		69	NA	157%	0.22	1.1
S291/S292	0.11	0.25	0.63	77%	140%	0.22	1.1
S293	5.8494		32	NA	138%	0.22	1.1
S295	25.3128 Hi		210	NA	157%	0.22	1.1
S299	0.4997		2.2	NA	126%	0.22	1.1
S300	0.8597		5.8	NA	148%	0.22	1.1
S301	3.3954		8.5	NA	86%	0.22	1.1
S302	8.0667		27	NA	108%	0.22	1.1
S303/S304	0.04	0.10	0.34	80%	156%	0.22	1.1
S305	1.3598		5.6	NA	122%	0.22	1.1
S306	1.544		13	NA	158%	0.22	1.1
S315/S316	0.07	0.05	0.045	20%	38%	0.22	1.1
S327/S328	0.21	0.65	3.3	104%	177%	0.22	1.1

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit.

ND = Not detected

na = Not applicable; duplicate was not analyzed by RaPID Assay Kit

NA = Not applicable; duplicate was not collected

Hi = Value detected above the calibrated range of the RaPID Assay Kit

Table E-2: Initial Transmitter Buildings Area Decision UnitRSD Evaluation

				Samp	le ID (Soil Sa	mples)								
		DU TC - S135	5		DU TC - S13	6		DU TC - S137	7					
	(Prima	ary Subsurfac	e Soil)	(Replic	ate Subsurfa	ice Soil)	(Replic	ate Subsurfa	ce Soil)					
			Method			Method			Method	Sta	tistical Evalua	ation	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	Average	Standard	Relative	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	Conc.	Deviation	Standard	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Deviation	(mg/kg)	(mg/kg)
Polychlorinated Biphen	yls (EPA 8082)													
PCB - 1016	ND	0.0033	0.0011	ND	0.0032	0.001	ND	0.0033	0.0011	NA	NA	NA	3.9	1.1
PCB - 1221	ND	0.0033	0.0026	ND	0.0032	0.0026	ND	0.0033	0.0026	NA	NA	NA	0.14	1.1
PCB - 1232	ND	0.0033	0.0023	ND	0.0032	0.0022	ND	0.0033	0.0023	NA	NA	NA	0.14	1.1
PCB - 1242	ND	0.0033	0.00069	ND	0.0032	0.00067	ND	0.0033	0.00069	NA	NA	NA	0.22	1.1
PCB - 1248	ND	0.0033	0.00043	ND	0.0032	0.00042	ND	0.0033	0.00043	NA	NA	NA	0.22	1.1
PCB - 1254	ND	0.0033	0.00069	ND	0.0032	0.00067	ND	0.0033	0.00069	NA	NA	NA	0.22	1.1
PCB - 1260	5.4	0.33	0.099	15	0.32	0.096	1.8	0.33	0.0099	7.40	6.82	92%	0.22	1.1
RCRA Metals (EPA 6010)B/7471A)													
Arsenic	9.0	5.8	0.25	11	6.0	0.26	9.9	5.6	0.24	9.97	1.00	10%	0.39	0.43
Lead	110	2.9	0.23	54	3.0	0.24	1900	2.8	0.22	688	1050	153%	400	400
Barium	140	0.97	0.029	94	0.99	0.030	190	0.94	0.028	141	48	34%	15000	3100
Cadmium	0.37	0.97	0.15	1.1	0.99	0.16	0.90	0.94	0.15	0.790	0.377	48%	70	14
Chromium	110	2.5	0.091	110	2.6	0.093	120	2.4	0.088	113	6	5%	280	500
Selenium	59	9.7	0.23	53	9.9	0.24	67	9.4	0.22	60	7	12%	390	78
Silver	ND	1.9	0.087	ND	2.0	0.089	ND	1.9	0.084	NA	NA	NA	390	78
Mercury	ND	0.018	0.0057	0.0073	0.019	0.0059	ND	0.019	0.0061	0.00637	0.00083	13%	5.6	4.7
Total Petroleum Hydroc	arbons (EPA 8	BO15M)												
GRO	2.5	8.6	1.4	2.3	7.2	1.2	1.8	6.7	1.1	2.20	0.36	16%	NS	600
DRO	6.5	8.3	1.5	18	8.2	1.4	6.4	8.2	1.4	10.3	6.7	65%	NS	500
RRO	25	17	4.6	92	16	4.6	40	16	4.6	52	35	67%	NS	2300

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL

Italics values are estimated as the analyte was detected below the reporting limit but above the method detection limit.

ND = Not detected

NS = No standard

NA = Not applicable; average, standard deviation, and RSD not calculated for analytes with all ND.

Note: Average, standard deviation and RSD were calculated with method detection limit for analytes with ND.

Table E-3: Follow-Up Transmitter Buildings Area Decision UnitRSD Evaluation

				Sample	e ID (Soil Sa	amples)								
	D	U TA-1 - T0	01	D	U TA-1 - T0	02	D	U TA-1 - T0	03					
	(Pr	imary Samp	ole)	(Re	plicate Sam	ple)	(Re	plicate Sam	ple)					
			Method			Method			Method	Stat	stical Eval	uation	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	Average	Standard	Relative	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	Conc.	Deviation	Standard	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Deviation	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 8082	2)												
PCB - 1016	ND	0.0032	0.00099	ND	0.0031	0.00098	ND	0.0032	0.00097	NA	NA	NA	3.9	1.1
PCB - 1221	ND	0.0032	0.0025	ND	0.0031	0.0025	ND	0.0032	0.0024	NA	NA	NA	0.14	1.1
PCB - 1232	ND	0.0032	0.0022	ND	0.0031	0.0021	ND	0.0032	0.0021	NA	NA	NA	0.14	1.1
PCB - 1242	ND	0.0032	0.00065	ND	0.0031	0.00064	ND	0.0032	0.00064	NA	NA	NA	0.22	1.1
PCB - 1248	ND	0.0032	0.00040	ND	0.0031	0.00040	ND	0.0032	0.00039	NA	NA	NA	0.22	1.1
PCB - 1254	ND	0.0032	0.00065	ND	0.0031	0.00064	ND	0.0032	0.00064	NA	NA	NA	0.22	1.1
PCB - 1260	0.50	0.0032	0.0046	0.71	0.0031	0.0046	0.64	0.0032	0.0045	0.617	0.107	17%	0.22	1.1
Lead (EPA 6010B)														
Lead	15	14	1.1	130	14	1.1	97	13	1.1	80.7	59.2	73%	400	400

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL

ND = Not detected

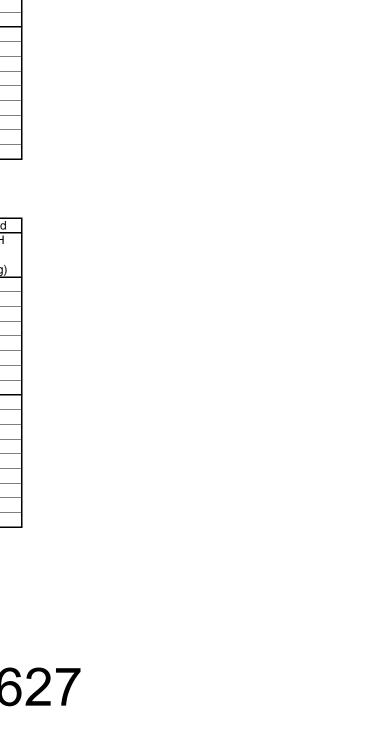
NA = Not applicable; average, standard deviation, and RSD not calculated for analytes with all ND.

Table E-4: 80-Acre Area Outside of the Transmitter Buildings Area Decision Units RSD Evaluation Page 201

				<u>Samp</u>	le ID (Soil Sa	mples)								
		DU1 - S111			DU1 - S112			DU1 - S113						
	(Prima	ry Subsurfac	e Soil)	(Replic	ate Subsurfa	ce Soil)	(Replic	ate Subsurfa	ce Soil)					
Γ			Method			Method			Method	Sta	tistical Evalua	ation	Regulator	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	Average	Standard	Relative	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	Conc.	Deviation	Standard	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Deviation	(mg/kg)	(mg/kg)
Polychlorinated Bip	ohenyls (EP/	4 8082)												
PCB - 1016	ND	0.0033	0.0011	ND	0.0033	0.0011	ND	0.0033	0.0011	NA	NA	NA	3.9	1.1
PCB - 1221	ND	0.0033	0.0027	ND	0.0033	0.0026	ND	0.0033	0.0027	NA	NA	NA	0.14	1.1
PCB - 1232	ND	0.0033	0.0023	ND	0.0033	0.0023	ND	0.0033	0.0023	NA	NA	NA	0.14	1.1
PCB - 1242	ND	0.0033	0.00070	ND	0.0033	0.00069	ND	0.0033	0.00070	NA	NA	NA	0.22	1.1
PCB - 1248	ND	0.0033	0.00043	ND	0.0033	0.00043	ND	0.0033	0.00043	NA	NA	NA	0.22	1.1
PCB - 1254	ND	0.0033	0.00070	ND	0.0033	0.00069	ND	0.0033	0.00070	NA	NA	NA	0.22	1.1
PCB - 1260	0.0024	0.0033	0.00099	0.0025	0.0033	0.00098	0.0024	0.0033	0.00099	0.00243	0.00006	2%	0.22	1.1
RCRA Metals (EPA	6010B/7471	A)												
Arsenic	3.8	5.7	0.25	4.4	5.7	0.25	2.6	5.7	0.25	3.60	0.92	26%	0.39	0.43
_ead	7.7	2.9	0.23	58	2.8	0.23	9.3	2.9	0.23	25.00	28.59	114%	400	400
Barium	80	0.96	0.029	80	0.95	0.028	84	0.95	0.029	81	2	2%	15000	3100
Cadmium	ND	0.96	0.15	ND	0.95	0.15	ND	0.95	0.15	NA	NA	NA	70	14
Chromium	140	2.5	0.090	140	2.5	0.089	130	2.5	0.090	137	6	4%	280	500
Selenium	78	9.6	0.23	79	9.5	0.23	79	9.5	0.23	79	1	1%	390	78
Silver	ND	1.9	0.086	ND	1.9	0.085	ND	1.9	0.086	NA	NA	NA	390	78
Vercury	ND	0.018	0.0057	ND	0.020	0.0062	0.0080	0.018	0.0057	0.01533	0.00643	42%	5.6	4.7

				<u>Sampl</u>	e ID (Soil Sa	mples)								
		DU 12 - S124			DU 12 - S125			DU 12 - S126	5					
	(P	rimary Samp	le)	(Re	plicate Sam	ole)	(Re	eplicate Samp	ole)					
			Method			Method			Method	Sta	tistical Evalua	ition	Regulatory	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	Average	Standard	Relative	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	Conc.	Deviation	Standard	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Deviation	(mg/kg)	(mg/kg)
Polychlorinated Bi	iphenyls (EP)	A 8082)												
PCB - 1016	ND	0.0033	0.0011	ND	0.0033	0.0011	ND	0.0032	0.0010	NA	NA	NA	3.9	1.1
PCB - 1221	ND	0.0033	0.0026	ND	0.0033	0.0027	ND	0.0032	0.0026	NA	NA	NA	0.14	1.1
PCB - 1232	ND	0.0033	0.0023	ND	0.0033	0.0023	ND	0.0032	0.0023	NA	NA	NA	0.14	1.1
PCB - 1242	ND	0.0033	0.00070	ND	0.0033	0.00070	ND	0.0032	0.00068	NA	NA	NA	0.22	1.1
PCB - 1248	ND	0.0033	0.00043	ND	0.0033	0.00043	ND	0.0032	0.00042	NA	NA	NA	0.22	1.1
PCB - 1254	ND	0.0033	0.00070	ND	0.0033	0.00070	ND	0.0032	0.00068	NA	NA	NA	0.22	1.1
PCB - 1260	0.0019	0.0033	0.0010	ND	0.0033	0.0010	0.0076	0.0032	0.00097	0.00350	0.00358	102%	0.22	1.1
RCRA Metals (EPA	A 6010B/7471	A)												
Arsenic	1.8	5.9	0.25	4.4	5.8	0.25	15	5.8	0.25	7.07	6.99	99%	0.39	0.43
Lead	11	2.9	0.23	11	2.9	0.23	46	2.9	0.23	22.67	20.21	89%	400	400
Barium	65	0.98	0.029	67	0.97	0.029	66	0.97	0.029	66	1	2%	15000	3100
Cadmium	ND	0.98	0.16	0.16	0.97	0.16	0.25	0.97	0.15	0.190	0.052	27%	70	14
Chromium	87	2.5	0.092	100	2.5	0.091	98	2.5	0.091	95	7	7%	280	500
Selenium	48	9.8	0.23	51	9.7	0.23	32	9.7	0.23	44	10	23%	390	78
Silver	ND	2.0	0.088	ND	1.9	0.087	ND	1.9	0.087	NA	NA	NA	390	78
Mercury	ND	0.020	0.0062	ND	0.019	0.0058	ND	0.020	0.0062	NA	NA	NA	5.6	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL


Italics values are estimated as the analyte was detected below the reporting limit but above the method detection limit.

ND = Not detected

NS = No standard

NA = Not applicable; average, standard deviation, and RSD not calculated for analytes with all ND.

Note: Average, standard deviation and RSDwere calculated with method detection limit for analytes with ND.

Table E-5: Berm MI Samples RSD Evaluation

			Sam	ple ID (Tre	nched Bern	n Soil Samp	oles)							
	B	Berm 10 - B1			Berm 10 - B1			erm 10 - B1	2					
	(Pr	imary Sam	ole)	(Re	plicate Sam	nple)	(Re	plicate Sam	ple)					
	•		Method	•	-	Method	•		Method	Stat	istical Evalu	ation	Regulatory	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	Average	Standard	Relative	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	Conc.	Deviation	Standard	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Deviation	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	s (EPA 808)	2)			-									-
PCB - 1016	ND	0.0033	0.0010	ND	0.0033	0.0010	ND	0.0033	0.0010	NA	NA	NA	3.9	1.1
PCB - 1221	ND	0.0033	0.0026	ND	0.0033	0.0026	ND	0.0033	0.0026	NA	NA	NA	0.14	1.1
PCB - 1232	ND	0.0033	0.0023	ND	0.0033	0.0023	ND	0.0033	0.0023	NA	NA	NA	0.14	1.1
PCB - 1242	ND	0.0033	0.00069	ND	0.0033	0.00069	ND	0.0033	0.00068	NA	NA	NA	0.22	1.1
PCB - 1248	ND	0.0033	0.00043	ND	0.0033	0.00042	ND	0.0033	0.00042	NA	NA	NA	0.22	1.1
PCB - 1254	ND	0.0033	0.00069	ND	0.0033	0.00069	ND	0.0033	0.00068	NA	NA	NA	0.22	1.1
PCB - 1260	0.019	0.0033	0.00098	0.019	0.0033	0.00098	0.017	0.0033	0.00098	0.01833	0.00115	6%	0.22	1.1
RCRA Metals (EPA 6010B	/7471A)													
Arsenic	13	29	1.2	10	28	1.2	15	28	1.2	12.67	2.52	20%	0.39	0.43
Lead	12	14	1.2	5.6	14	1.1	5.8	14	1.1	7.80	3.64	47%	400	400
Barium	150	4.8	0.14	140	4.6	0.14	150	4.7	0.14	147	6	4%	15000	3100
Cadmium	ND	4.8	0.77	ND	4.6	0.74	ND	4.7	0.75	NA	NA	NA	70	14
Chromium	220	12	0.45	200	12	0.44	220	12	0.44	213	12	6%	280	500
Selenium	ND	48	1.2	ND	46	1.1	ND	47	1.1	NA	NA	NA	390	78
Silver	ND	9.6	0.43	ND	9.3	0.42	ND	9.3	0.42	NA	NA	NA	390	78
Mercury	ND	0.019	0.0061	ND	0.019	0.0058	ND	0.019	0.0059	NA	NA	NA	5.6	4.7

			Sam	ple ID (Tre	nched Berr	n Soil Samp	oles)							
	В	erm 20 - B2	2	E	3erm 20 - B2	23	B	8erm 20 - B2	24					
	(Pr	imary Sam	ole)	(Re	plicate Sam	nple)	(Re	plicate Sam	ple)					
			Method			Method			Method	Stat	stical Evalu	uation	Regulatory	y Standard
	Sample	Reporting	Detection	Sample	Reporting	Detection	Sample	Reporting	Detection	Average	Standard	Relative	EPA	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	Conc.	Deviation	Standard	RSL	EAL
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Deviation	(mg/kg)	(mg/kg)
Polychlorinated Biphenyls	6 (EPA 8082	2)												
PCB - 1016	ND	0.0030	0.0010	ND	0.0033	0.0011	ND	0.0033	0.0011	NA	NA	NA	3.9	1.1
PCB - 1221	ND	0.0030	0.0024	ND	0.0033	0.0027	ND	0.0033	0.0027	NA	NA	NA	0.14	1.1
PCB - 1232	ND	0.0030	0.0021	ND	0.0033	0.0023	ND	0.0033	0.0023	NA	NA	NA	0.14	1.1
PCB - 1242	ND	0.0030	0.00064	ND	0.0033	0.00070	ND	0.0033	0.00070	NA	NA	NA	0.22	1.1
PCB - 1248	ND	0.0030	0.00040	ND	0.0033	0.00043	ND	0.0033	0.00043	NA	NA	NA	0.22	1.1
PCB - 1254	ND	0.0030	0.00069	ND	0.0033	0.00070	ND	0.0033	0.00070	NA	NA	NA	0.22	1.1
PCB - 1260	0.0036	0.0030	0.00091	0.0033	0.0033	0.0010	0.0033	0.0033	0.0010	0.00340	0.00017	5%	0.22	1.1
RCRA Metals (EPA 6010B)	/7471A)													
Arsenic	6.5	28	1.2	6.4	27	1.2	6.5	28	1.2	6.47	0.06	1%	0.39	0.43
Lead	1.6	14	1.1	1.6	14	1.1	1.3	14	1.1	1.50	0.17	11%	400	400
Barium	130	4.7	0.14	130	4.5	0.14	130	4.6	0.14	130	0	0%	15000	3100
Cadmium	ND	4.7	0.75	ND	4.5	0.73	ND	4.6	0.74	NA	NA	NA	70	14
Chromium	220	12	0.44	210	12	0.43	210	12	0.44	213	6	3%	280	500
Selenium	ND	47	1.1	ND	45	1.1	ND	46	1.1	NA	NA	NA	390	78
Silver	ND	9.3	0.42	ND	9.1	0.41	ND	9.3	0.42	NA	NA	NA	390	78
Mercury	ND	0.019	0.0059	ND	0.018	0.0057	ND	0.0019	0.0058	NA	NA	NA	5.6	4.7

Bold values indicate that detected concentration exceeds the EPA Residential RSL and/or the HDOH Unrestricted Land Use EAL

Italics values are estimated as the analyte was detected below the reporting limit but above the method detection limit.

ND = Not detected

NS = No standard

NA = Not applicable; average, standard deviation, and RSD not calculated for analytes with all ND.

Note: Average, standard deviation and RSD were calculated with method detection limit for analytes with ND.

Table E-6: Groundwater Sample ResultsRPD Evaluation

		Sam	ple ID (Grour	ndwater Sam	ples)		1	
		MW-2 - W01			MW-2 - W02			
	(P	rimary Samp	le)	(Di	uplicate Sam	ole)		
			Method	-		Method		
	Sample	Reporting	Detection	Sample	Reporting	Detection	Relative	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Percent	GAL
Analyte	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	Difference	(µg/L)
Volatile Organic Compounds (EPA	8260B)							
Chloromethane	ND	5.0	0.18	ND	5.0	0.18	NA	290
Vinyl Chloride	ND	1.0	0.091	ND	1.0	0.091	NA	21
Bromomethane	ND	5.0	0.091	ND	5.0	0.091	NA	360
Chloroethane	ND	5.0	0.25	ND	5.0	0.25	NA	3.9
Trichlorofluoromethane	ND	1.0	0.069	ND	1.0	0.069	NA	NS
1,1-Dichloroethene	ND	1.0	0.066	ND	1.0	0.066	NA	3900
Methylene Chloride	ND	1.0	0.10	ND	1.0	0.10	NA	3100
trans-1,2-Dichloroethene	ND	1.0	0.051	ND	1.0	0.051	NA	2600
1,1-Dichloroethane	ND	1.0	0.049	ND	1.0	0.049	NA	47
cis-1,2-Dichloroethene	ND	1.0	0.067	ND	1.0	0.067	NA	4300
Chloroform	ND	1.0	0.057	ND	1.0	0.057	NA	74
1,1,1-Trichloroethane	ND	1.0	0.041	ND	1.0	0.041	NA	6000
Carbon tetrachloride	ND	1.0	0.10	ND	1.0	0.10	NA	31
1,2-Dichloroethane	ND	1.0	0.076	ND	1.0	0.076	NA	120
Trichloroethene	0.71	1.0	0.056	0.53	1.0	0.056	29%	480
1,2-Dichloropropane	ND	1.0	0.14	ND	1.0	0.14	NA	100
Bromodichloromethane	ND	1.0	0.053	ND	1.0	0.053	NA	160
cis-1,3-Dichloropropene	ND	1.0	0.051	ND	1.0	0.051	NA	260
trans-1,3-Dichloropropene	ND	1.0	0.043	ND	1.0	0.043	NA	260
1,1,2-Trichloroethane	ND	1.0	0.062	ND	1.0	0.062	NA	300
Tetrachloroethene	ND	1.0	0.063	ND	1.0	0.063	NA	140
Dibromochloromethane	ND	1.0	0.32	ND	1.0	0.32	NA	270
Chlorobenzene	ND	1.0	0.086	ND	1.0	0.086	NA	160
Bromoform	ND	1.0	0.11	ND	1.0	0.11	NA	5100
Methyl tert-butyl ether	ND	1.0	0.062	ND	1.0	0.062	NA	1800
1,1,2,2-Tetrachloroethane	ND	1.0	0.062	ND	1.0	0.062	NA	160
1,3-Dichlorobenzene	ND	1.0	0.091	ND	1.0	0.091	NA	370
1,4-Dichlorobenzene	ND	1.0	0.075	ND	1.0	0.075	NA	110
1,2-Dichlorobenzene	ND	1.0	0.061	ND	1.0	0.061	NA	100
Benzene	ND	1.0	0.057	ND	1.0	0.057	NA	1500
Toluene	ND	1.0	0.076	0.084	1.0	0.076	10%	400
Ethylbenzene	ND	1.0	0.061	ND	1.0	0.061	NA	300
m-Xylene & p-Xylene	ND	2.0	0.11	ND	2.0	0.11	NA	1000
o-Xylene	ND	1.0	0.080	ND	1.0	0.080	NA	1000

Bold values indicate that detected concentration exceeds the HDOH Groundwater Action Level where groundwater is not a current or potential drinking water *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit.

ND = Not detected

NA = Not applicable; RPD not calculated for analytes with both ND.

Note: RPD were calculated with method detection limit for analytes with ND.

Table E-6: Groundwater Sample Results (cont.) RPD Evaluation

RPD Evaluation		Sam	ple ID (Grour	ndwater Sam	nples)		T	
		MW-2 - W01			MW-2 - W02		1	
	(P	rimary Samp	le)	(Di	uplicate Sam			
			Method	, - ·		Method	1	
	Sample	Reporting	Detection	Sample	Reporting	Detection	Relative	HDOH
	Result	Limit	Limit	Result	Limit	Limit	Percent	GAL
Analyte	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	Difference	(µg/L)
Volatile Organic Compounds (EPA							•	
Naphthalene	NĎ	2.1	0.077	ND	2.1	0.076	NA	210
2-Methylnaphthalene	ND	1.0	0.10	ND	1.0	0.10	NA	100
1-Methylnaphthalene	ND	0.31	0.15	ND	0.31	0.14	NA	100
Acenaphthylene	ND	0.42	0.039	ND	0.41	0.038	NA	300
Acenaphthene	ND	0.52	0.040	ND	0.52	0.039	NA	200
Fluorene	ND	0.31	0.039	ND	0.31	0.038	NA	300
Phenanthrene	ND	0.42	0.048	ND	0.41	0.047	NA	7.7
Anthracene	ND	0.21	0.043	ND	0.21	0.042	NA	0.73
Fluoranthene	ND	0.26	0.067	ND	0.26	0.066	NA	40
Pyrene	ND	0.31	0.055	ND	0.31	0.055	NA	2.0
Benzo[a]anthracene	ND	0.31	0.070	ND	0.31	0.069	NA	0.027
Chysene	ND	0.21	0.068	ND	0.21	0.067	NA	0.35
Benzo[b]fluoranthene	ND	0.42	0.057	ND	0.41	0.057	NA	0.092
Benzo[k]fluoranthene	ND	0.31	0.046	ND	0.31	0.045	NA	0.40
Benzo[a]pyrene	ND	0.21	0.075	ND	0.21	0.074	NA	0.014
Indeno[1,2,3-cd]pyrene	ND	0.31	0.059	ND	0.31	0.059	NA	0.092
Dibenz(a,h)anthracene	ND	0.31	0.054	ND	0.31	0.054	NA	0.52
Benzo[g,h,i]perylene	ND	0.31	0.060	ND	0.31	0.060	NA	0.10
Gasoline Range Organics (EPA 80							1 <u> </u>	
HI Gasoline Range Organics	510	50	9.2	490	50	9.2	4.0%	5000
Diesel Range Organics (EPA 8015		0.50			0.50			0500
HI Diesel Range Organics	ND	250	62	62	250	62	0.0%	2500
HI Residual Range Organics	93	500	56	150	510	57	47%	2500
Polychlorinated Bipheynls (EPA 8		0.50	0.050	ND	0.57	0.054		0.0
PCB - 1016	ND	0.59	0.053	ND	0.57	0.051	NA	2.0
PCB - 1221	ND	0.59	0.073	ND	0.57	0.071	NA	2.0
PCB - 1232	ND	0.59	0.049	ND	0.57	0.047	NA	2.0
PCB - 1242	ND	0.59	0.049	ND	0.57	0.047	NA	2.0
PCB - 1248	ND	0.59	0.084	ND	0.57	0.081	NA	2.0
PCB - 1254	ND ND	0.59	0.052	ND	0.57	0.050	NA NA	2.0
PCB - 1260		0.59	0.046	ND	0.57	0.044	INA	2.0
RCRA Metals (EPA 6010B/7471A)		60	47	51	60	17	9 20/	60
Arsenic	ND ND	60 30	4.7 1.7	5.1 ND	60	4.7	8.2% NA	69 29
Lead	ND 29	30 10		ND 30	30 10			
Barium			0.35			0.35	3.4%	2000
Cadmium	ND ND	10 25	1.5 3.3	ND ND	10 25	1.5 3.3	NA NA	3.0 570
Chromium Solonium	ND	25 100	3.3 2.0	ND ND	100	2.0	NA	20
Selenium Silver	ND	20	0.85	ND ND	20	0.85	NA	1.0
Mercury	ND	0.20	0.85	ND ND	0.20	0.85	NA	2.1
mercury		0.20	0.041	שא	0.20	0.041	IN/A	۲.۱

Bold values indicate that detected concentration exceeds the HDOH Groundwater Action Level where groundwater is not a current or potential drinking water *Italics* values are estimated as the analyte was detected below the reporting limit but above the method detection limit.

ND = Not detected

NA = Not applicable; RPD not calculated for analytes with both ND.

Note: RPD was calculated with method detection limit for analytes with ND.

Table E-7: PCB Method Comaparison RPD Evaluation

	Method	Method	Method	
	8082	1668	1668	Relative
	Result ¹	Result ²	Result ³	Percent
Sample ID	(mg/kg)	(mg/kg)	(mg/kg)	Difference
S052	0.12	0.15	0.11	9%
S218	12	9.2	6.0	67%
S269	19	14.6	9.3	69%
S307	1.0	1.4	0.94	6%
S374	4.1	7.8	5.0	20%

¹ Sample result based on sum of Aroclors

² Sample result based on sum of 209 congeners from raw data

³ Sample result corrected for coeluting congeners

Appendix F PCB Congener Data

		S052			S218			S269			S307			S374		Average percent in		
	Result	Footnotes	RL	Aroc	lor (a)													
Component	pg/g		pg/g	1254	1260													
PCB 1 (BZ)	ND		21	ND		20	29		20	ND		20	ND		21			
PCB 2 (BZ)	ND		21	30		20	30		20	ND		20	ND		21			
PCB 3 (BZ)	ND		21	27		20	27		20	ND		20	ND		21			
PCB 4 (BZ)	ND		21	ND		20	40	C	20	ND		20	ND		21			
PCB 5 (BZ)	ND		21	33	С	20	61	C	20	ND		20	ND		21			
PCB 6 (BZ)	ND		21	24		20	30		20	ND		20	ND		21			
PCB 7 (BZ)	ND		21	ND		20	20	C	20	ND		20	ND		21			
PCB 8 (BZ)	ND		21	33	С	20	61	C	20	ND		20	ND		21			
PCB 9 (BZ)	ND		21	ND		20	20	C	20	ND		20	ND		21			
PCB 10 (BZ)	ND		21	ND		20	40	C	20	ND		20	ND		21			
PCB 11 (BZ)	ND		21	58		20	45		20	22		20	120		21			
PCB 12 (BZ)	ND		21	46	С	20	59	C	20	ND		20	ND		21			
PCB 13 (BZ)	ND		21	46	С	20	59	C	20	ND		20	ND		21			
PCB 14 (BZ)	ND		21	ND		20	ND		20	ND		20	ND		21			
PCB 15 (BZ)	ND		21	69		20	110		20	ND		20	42		21			
PCB 16 (BZ)	ND		21	38	С	20	150	С	20	ND		20	ND		21	(b)	0.04	
PCB 17 (BZ)	ND		21	71		20	190		20	ND		20	21		21	0.19	0.05	
PCB 18 (BZ)	ND		21	81		20	270		20	ND		20	27		21	0.41	0.12	
PCB 19 (BZ)	ND		21	23		20	96		20	ND		20	ND		21			
PCB 20 (BZ)	ND		21	84	С	20	160	C	20	ND		20	33	С	21			
PCB 21 (BZ)	ND		21	84	С	20	160	С	20	ND		20	33	С	21		0.01	
PCB 22 (BZ)	ND		21	33		20	86		20	ND		20	ND		21		0.01	
PCB 23 (BZ)	ND		21	ND		20	ND		20	ND		20	ND		21			
PCB 24 (BZ)	ND		21	ND		20	63	С	20	ND		20	ND		21		0.01	
PCB 25 (BZ)	ND		21	31		20	55		20	ND		20	ND		21			
PCB 26 (BZ)	ND		21	71		20	140		20	ND		20	22		21		0.02	
PCB 27 (BZ)	ND		21	ND		20	63	С	20	ND		20	ND		21			
PCB 28 (BZ)	ND		21	81		20	190		20	ND		20	52		21	0.25	0.045	
PCB 29 (BZ)	ND		21	ND		20	ND		20	ND		20	ND		21		0.02	
PCB 30 (BZ)	ND		21	ND		20	ND		20	ND		20	ND		21			
PCB 31 (BZ)	ND		21	83		20	230		20	ND		20	60		21	0.22	0.05	
PCB 32 (BZ)	ND		21	38	С	20	150	C	20	ND		20	ND		21			
PCB 33 (BZ)	ND		21	84	C	20	160	C	20	ND		20	33	С	21	0.14	0.09	
PCB 34 (BZ)	ND		21	ND		20	ND		20	ND		20	ND		21			
PCB 35 (BZ)	ND		21	98		20	98		20	ND		20	34		21			
PCB 36 (BZ)	ND		21	23		20	29		20	ND		20	ND		21			
PCB 37 (BZ)	ND		21	150		20	230		20	43		20	78		21		0.04	

(a) Bush et al. (1985), Safe et al. (1985), Schulz et al. (1989), Smith et al. (1990).

(b) = no data.

C - Co-eluting isomer

Q - Estimated maximum possible concentration (EMPC)

G - Elevated reporting limit. The reporting limit is elevated due to matrix interference

D - Result was obtained from the analysis of a dilution

E - Estimated results. Result concentration exceeds the calibration range

B - Method blank contamination. The associated method blank contains the target analyte at a reportable level

		S052			S218			S269			S307			S374		Average	percent in
	Result	Footnotes	RL	Aroc	or (a)												
Component	pg/g		pg/g	1254	1260												
PCB 38 (BZ)	ND		21	24		20	27		20	ND		20	ND		21		
PCB 39 (BZ)	ND		21	ND		20	22		20	ND		20	ND		21		
PCB 40 (BZ)	ND		21	75		20	400		20	ND		20	22		21	0.2	0.03
PCB 41 (BZ)	ND		300	330	С	310	1800	C	300	ND		310	360	С	300	0.64	0.2
PCB 42 (BZ)	ND		21	180	С	20	740	С	20	ND		20	55	С	21		0.04
PCB 43 (BZ)	36	С	21	710	С	20	3200	C E	20	42	С	20	330	С	21		0.02
PCB 44 (BZ)	40		21	690		20	4900	E	20	41		20	380		21	2.03	0.11
PCB 45 (BZ)	ND		21	58		20	300		20	ND		20	ND		21		0.07
PCB 46 (BZ)	ND		21	37		20	170		20	ND		20	ND		21		0.02
PCB 47 (BZ)	ND		1200	1500	С	1200	2600	C E	1200	ND		1200	ND		1200	0.17	0.11
PCB 48 (BZ)	ND		1200	1500	С	1200	2600	C E	1200	ND		1200	ND		1200	0.14	0.19
PCB 49 (BZ)	36	С	21	710	С	20	3200	C E	20	42	С	20	330	С	21	1.64	0.06
PCB 50 (BZ)	ND		21	ND		20	ND		20	ND		20	ND		21		
PCB 51 (BZ)	ND		300	370		310	660		300	ND		310	ND		300		
PCB 52 (BZ)	100	С	21	2800	C E	20	15000	C E	20	140	С	20	1600	С	21	5.18	0.41
PCB 53 (BZ)	ND		21	210		20	820		20	ND		20	36		21	0.09	0.04
PCB 54 (BZ)	ND		21	ND		20	41		20	ND		20	ND		21		
PCB 55 (BZ)	ND		21	26		20	55		20	ND		20	ND		21		
PCB 56 (BZ)	ND		21	610	С	20	1900	С	20	73	С	20	220	С	21	0.56	0.14
PCB 57 (BZ)	ND		21	34		20	67		20	ND		20	ND		21		
PCB 58 (BZ)	ND		21	21		20	49		20	ND		20	ND		21		
PCB 59 (BZ)	ND		21	69	С	20	190	С	20	ND		20	23	CQ	21		
PCB 60 (BZ)	ND		21	610	С	20	1900	С	20	73	С	20	220	С	21	0.56	0.14
PCB 61 (BZ)	ND		21	480	С	20	1500	C	20	35	С	20	150	С	21		
PCB 62 (BZ)	ND		21	ND		20	ND		20	ND		20	ND		21		
PCB 63 (BZ)	ND		21	34		20	120		20	ND		20	ND		21	0.05	
PCB 64 (BZ)	ND		300	330	С	310	1800	С	300	ND		310	360	С	300	0.45	
PCB 65 (BZ)	ND		21	ND		20	ND		20	ND		20	ND		21		
PCB 66 (BZ)	27	CQ	21	1800	С	20	4200	C E	20	89	С	20	820	CQ	21	0.59	
PCB 67 (BZ)	ND		21	150		20	290		20	ND		20	34		21	0.09	
PCB 68 (BZ)	ND		300	330	С	310	1800	C	300	ND		310	360	C	300		
PCB 69 (BZ)	ND		21	ND		20	ND		20	ND		20	ND		21		
PCB 70 (BZ)	88		21	2000	E	20	6500	E	20	270		20	450		21	3.21	0.12
PCB 71 (BZ)	ND		21	180		20	780		20	ND		20	61		21		
PCB 72 (BZ)	ND		21	98		20	200		20	ND		20	53		21		
PCB 73 (BZ)	100	С	21	2800	C E	20	15000	C E	20	140	С	20	1600	C	21		

(a) Bush et al. (1985), Safe et al. (1985), Schulz et al. (1989), Smith et al. (1990).

(b) = no data.

C - Co-eluting isomer

Q - Estimated maximum possible concentration (EMPC)

G - Elevated reporting limit. The reporting limit is elevated due to matrix interference

D - Result was obtained from the analysis of a dilution

E - Estimated results. Result concentration exceeds the calibration range

B - Method blank contamination. The associated method blank contains the target analyte at a reportable level

		S052			S218			S269			S307			S374		Average	percent in
	Result	Footnotes	RL	Aroc	or (a)												
Component	pg/g		pg/g	1254	1260												
PCB 74 (BZ)	ND		21	480	С	20	1500	С	20	35	С	20	150	С	21	0.78	0.03
PCB 75 (BZ)	ND		1200	1500	С	1200	2600	C E	1200	ND		1200	ND		1200		
PCB 76 (BZ)	27	CQ	21	1800	С	20	4200	C E	20	89	С	20	820	CQ	21		
PCB 77 (BZ)	ND	G	50	ND	G	1700	ND	G	2700	ND	G	790	ND	G	1100		
PCB 78 (BZ)	ND		21	67		20	140	Q	20	ND		20	25	Q	21		
PCB 79 (BZ)	ND		21	360		20	210		20	90		20	210	Q	21		
PCB 80 (BZ)	27	CQ	21	1800	С	20	4200	CE	20	89	С	20	820	CQ	21		
PCB 81 (BZ)	ND	G	4.6	ND	G	390	ND	G	860	ND	G	29	ND	G	230		
PCB 82 (BZ)	26		21	7800	D	410	ND	D	790	390	D	200	5900	D	420	0.95	0.112
PCB 83 (BZ)	ND		21	650	C D	410	2500	C D	790	ND	D	200	420	C D	420	0.45	0.04
PCB 84 (BZ)	51		21	2700	D	410	13000	D	790	ND	D	200	1100	D	420	1.95	0.45
PCB 85 (BZ)	68	С	21	2100	C D	410	7700	C D	790	290	C D	200	2100	C D	420	1.66	0.09
PCB 86 (BZ)	260	С	21	18000	C D	410	55000	C D	790	960	C D	200	12000	C D	420		
PCB 87 (BZ)	260	С	21	18000	C D	410	55000	C D	790	960	CD	200	12000	C D	420	3.78	0.61
PCB 88 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420		
PCB 89 (BZ)	800	С	21	86000	CED	410	200000	CED	790	4600	C D	200	57000	CED	420		
PCB 90 (BZ)	800	С	21	86000	CED	410	200000	CED	790	4600	C D	200	57000	CED	420	0.93	0.56
PCB 91 (BZ)	31		21	2000	D	410	7300	D	790	ND	D	200	920	D	420	0.83	0.07
PCB 92 (BZ)	110		21	11000	D	410	25000	D	790	510	D	200	7600	D	420	1.58	0.59
PCB 93 (BZ)	330	С	21	51000	CED	410	130000	CED	790	950	C D	200	28000	C D	420		
PCB 94 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420		
PCB 95 (BZ)	330	С	21	51000	CED	410	130000	CED	790	950	C D	200	28000	C D	420	6.02	2.87
PCB 96 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420	0.08	
PCB 97 (BZ)	260	С	21	18000	C D	410	55000	CD	790	960	C D	200	12000	C D	420	2.55	0.34
PCB 98 (BZ)	ND		21	ND	D	410	2000	C D	790	ND	D	200	ND	D	420		
PCB 99 (BZ)	150		21	5400	D	410	20000	D	790	380	D	200	4000	D	420	3.6	0.12
PCB 100 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420	0.1	0.02
PCB 101 (BZ)	800	С	21	86000	CED	410	200000	CED	790	4600	C D	200	57000	CED	420	7.94	3.82
PCB 102 (BZ)	ND		21	ND	D	410	2000	C D	790	ND	D	200	ND	D	420		
PCB 103 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420		
PCB 104 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420		
PCB 105 (BZ)	280	С	2.1	5300	CD	41	31000	C D	79	2200	C D	20	10000	C D	42	3.83	0.07
PCB 106 (BZ)	990	С	21	38000	CD	410	86000	CED	790	9800	C D	200	29000	C D	420		
PCB 107 (BZ)/109 (IUPAC)	120	С	21	3400	C D	410	6700	C D	790	990	C D	200	3200	C D	420	0.72	0.03
PCB 108 (BZ)/107 (IUPAC)	120	С	21	3400	C D	410	6700	C D	790	990	C D	200	3200	C D	420		
PCB 109 (BZ)/108 (IUPAC)	ND		21	650	CD	410	2500	C D	790	ND	D	200	420	C D	420		

(a) Bush et al. (1985), Safe et al. (1985), Schulz et al. (1989), Smith et al. (1990).

(b) = no data.

C - Co-eluting isomer

Q - Estimated maximum possible concentration (EMPC)

G - Elevated reporting limit. The reporting limit is elevated due to matrix interference

D - Result was obtained from the analysis of a dilution

E - Estimated results. Result concentration exceeds the calibration range

B - Method blank contamination. The associated method blank contains the target analyte at a reportable level

		S052			S218			S269			S307			S374		Average percent in		
	Result	Footnotes	RL	Aroc	lor (a)													
Component	pg/g		pg/g	1254	1260													
PCB 110 (BZ)	660		21	70000	E D	410	170000	E D	790	3300	D	200	45000	E D	420	5.85	1.8	
PCB 111 (BZ)	260	С	21	18000	C D	410	55000	C D	790	960	C D	200	12000	C D	420			
PCB 112 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420			
PCB 113 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420			
PCB 114 (BZ)	12		2.1	410	D	41	860	D	79	69	D	20	360	D	42			
PCB 115 (BZ)	260	С	21	18000	C D	410	55000	C D	790	960	C D	200	12000	C D	420	0.3	0.05	
PCB 116 (BZ)	260	С	21	18000	C D	410	55000	C D	790	960	C D	200	12000	C D	420			
PCB 117 (BZ)	260	С	21	18000	C D	410	55000	C D	790	960	C D	200	12000	C D	420			
PCB 118 (BZ)	990	С	2.1	38000	C D	41	86000	CED	79	9800	C D	20	29000	C D	42	6.39	0.53	
PCB 119 (BZ)	ND		21	ND	D	410	890	D	790	ND	D	200	ND	D	420	0.14		
PCB 120 (BZ)	68	С	21	2100	C D	410	7700	C D	790	290	CD	200	2100	C D	420			
PCB 121 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420			
PCB 122 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420	0.5	0.21	
PCB 123 (BZ)	ND		2.1	ND	D	41	ND	D	79	ND	D	20	ND	D	42	0.81		
PCB 124 (BZ)	57		21	4100	D	410	6900	D	790	460	D	200	3300	D	420			
PCB 125 (BZ)	260	С	21	18000	C D	410	55000	C D	790	960	C D	200	12000	C D	420			
PCB 126 (BZ)	140		2.1	3100	D	41	4900	D	79	2000	D	20	3400	D	42			
PCB 127 (BZ)	280	С	21	5300	C D	410	31000	C D	790	2200	C D	200	10000	C D	420			
PCB 128 (BZ)	940		21	46000	E D	410	91000	E D	790	7800	D	200	51000	E D	420	2.07	0.76	
PCB 129 (BZ)	140		21	12000	D	410	23000	D	790	1200	D	200	9400	D	420	0.23	0.66	
PCB 130 (BZ)	400		21	24000	D	410	42000	D	790	3500	D	200	24000	D	420	0.63	0.08	
PCB 131 (BZ)	ND		21	2200	C D	410	4800	CD	790	ND	D	200	1200	C D	420			
PCB 132 (BZ)	690	С	21	130000	CED	410	230000	CED	790	6700	C D	200	94000	CED	420	1.98	3.69	
PCB 133 (BZ)	120		21	6600	D	410	9200	D	790	820	D	200	6900	D	420			
PCB 134 (BZ)	110		21	23000	D	410	41000	D	790	800	D	200	18000	D	420	0.49	0.35	
PCB 135 (BZ)	540	С	21	94000	CED	410	150000	CED	790	3900	C D	200	69000	CED	420	1.62	2.56	
PCB 136 (BZ)	160		21	58000	E D	410	92000	E D	790	920	D	200	28000	D	420	1.12	1.82	
PCB 137 (BZ)	55		21	3100	D	410	7200	D	790	400	D	200	2300	D	420	0.25	0.14	
PCB 138 (BZ)	9500	C E	21	590000	CED	410	970000	CED	790	100000	CED	200	600000	CED	420	3.2	6.31	
PCB 139 (BZ)	3100	C E	21	500000	CED	410	790000	CED	790	23000	CED	200	410000	CED	420			
PCB 140 (BZ)	ND		21	770	D	410	1200	D	790	ND	D	200	620	D	420			
PCB 141 (BZ)	1300		21	150000	E D	410	260000	E D	790	13000	D	200	100000	E D	420	1.04	2.53	
PCB 142 (BZ)	ND		21	2200	CD	410	4800	C D	790	ND	D	200	1200	C D	420			
PCB 143 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420			
PCB 144 (BZ)	540	С	21	94000	CED	410	150000	CED	790	3900	C D	200	69000	CED	420		1.5	
PCB 145 (BZ)	ND	1	21	ND	D	410	ND	D	790	ND	D	200	ND	D	420			

(a) Bush et al. (1985), Safe et al. (1985), Schulz et al. (1989), Smith et al. (1990).

(b) = no data.

C - Co-eluting isomer

Q - Estimated maximum possible concentration (EMPC)

G - Elevated reporting limit. The reporting limit is elevated due to matrix interference

D - Result was obtained from the analysis of a dilution

E - Estimated results. Result concentration exceeds the calibration range

B - Method blank contamination. The associated method blank contains the target analyte at a reportable level

ſ		S052			S218			S269			S307			S374		Average percent in		
	Result	Footnotes	RL	Aroc	lor (a)													
Component	pg/g		pg/g	1254	1260													
PCB 146 (BZ)	1600		21	96000	E D	410	150000	E D	790	11000	D	200	94000	E D	420	0.83	1.39	
PCB 147 (BZ)	29		21	2000	D	410	3800	D	790	ND	D	200	1800	D	420			
PCB 148 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420			
PCB 149 (BZ)	3100	C E	21	500000	CED	410	790000	CED	790	23000	CED	200	410000	CED	420	2.21	7.61	
PCB 150 (BZ)	ND		21	440	D	410	ND	D	790	ND	D	200	ND	D	420			
PCB 151 (BZ)	760		21	150000	E D	410	230000	E D	790	5800	D	200	110000	E D	420	1.17	3.08	
PCB 152 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420			
PCB 153 (BZ)	8600	E	21	500000	E D	410	840000	E D	790	79000	E D	200	530000	E D	420	4.26	10.2	
PCB 154 (BZ)	23		21	2100	D	410	3300	D	790	ND	D	200	1600	D	420			
PCB 155 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420			
PCB 156 (BZ)	1100		2.1	47000	E D	41	79000	D	79	13000	D	20	40000	D	42	1.62	0.66	
PCB 157 (BZ)	170		2.1	5100	D	41	9600	D	79	1800	D	20	5500	D	42		0.14	
PCB 158 (BZ)	700	С	21	57000	CED	410	100000	CED	790	6100	C D	200	44000	CED	420	0.77	0.7	
PCB 159 (BZ)	180		21	9600	D	410	13000	D	790	1800	D	200	9500	D	420			
PCB 160 (BZ)	700	С	21	57000	CED	410	100000	CED	790	6100	CD	200	44000	CED	420		0.05	
PCB 161 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420			
PCB 162 (BZ)	110		21	6000	D	410	8900	D	790	1100	D	200	4500	D	420			
PCB 163 (BZ)	9500	C E	21	590000	CED	410	970000	CED	790	100000	CED	200	600000	CED	420			
PCB 164 (BZ)	9500	C E	21	590000	CED	410	970000	CED	790	100000	CED	200	600000	CED	420			
PCB 165 (BZ)	ND		21	2200	C D	410	4800	CD	790	ND	D	200	1200	C D	420			
PCB 166 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420			
PCB 167 (BZ)	520		2.1	20000	D	41	33000	D	79	7000	D	20	20000	D	42	0.21	0.21	
PCB 168 (BZ)	690	С	21	130000	CED	410	230000	CED	790	6700	C D	200	94000	CED	420			
PCB 169 (BZ)	38		2.1	690	D	41	1000	D	79	460	D	20	720	D	42		0.05	
PCB 170 (BZ)	10000	CEB	2.1	450000	CEDB	41	610000	CEDB	79	110000	CED	20	370000	CEBD	42	0.31	5.36	
PCB 171 (BZ)	1200		21	76000	E D	410	110000	E D	790	11000	D	200	62000	E D	420	0.05	1.65	
PCB 172 (BZ)	1100	С	21	51000	CED	410	68000	CD	790	10000	C D	200	42000	CED	420	0.05	0.78	
PCB 173 (BZ)	92		21	6200	D	410	9500	D	790	970	D	200	5700	D	420	0.09	0.21	
PCB 174 (BZ)	3700	E	21	250000	E D	410	340000	E D	790	39000	E D	200	200000	E D	420	0.34	4.68	
PCB 175 (BZ)	75		21	4000	QD	410	7500	D	790	1000	D	200	6100	D	420	0.05	0.36	
PCB 176 (BZ)	200		21	29000	D	410	42000	D	790	1600	D	200	15000	D	420	0.32	0.64	
PCB 177 (BZ)	3700	E	21	180000	E D	410	250000	E D	790	34000	E D	200	190000	E D	420	0.21	2.06	
PCB 178 (BZ)	1200		21	55000	E D	410	70000	D	790	8900	D	200	57000	E D	420	1.35	1.41	
PCB 179 (BZ)	980		21	94000	E D	410	120000	E D	790	7200	D	200	75000	E D	420			
PCB 180 (BZ)	15000	E B	2.1	640000	EDB	41	830000	EDB	79	140000	E D	20	490000	EBD	42	0.38	8.11	
PCB 181 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420			

(a) Bush et al. (1985), Safe et al. (1985), Schulz et al. (1989), Smith et al. (1990).

(b) = no data.

C - Co-eluting isomer

Q - Estimated maximum possible concentration (EMPC)

G - Elevated reporting limit. The reporting limit is elevated due to matrix interference

D - Result was obtained from the analysis of a dilution

E - Estimated results. Result concentration exceeds the calibration range

B - Method blank contamination. The associated method blank contains the target analyte at a reportable level

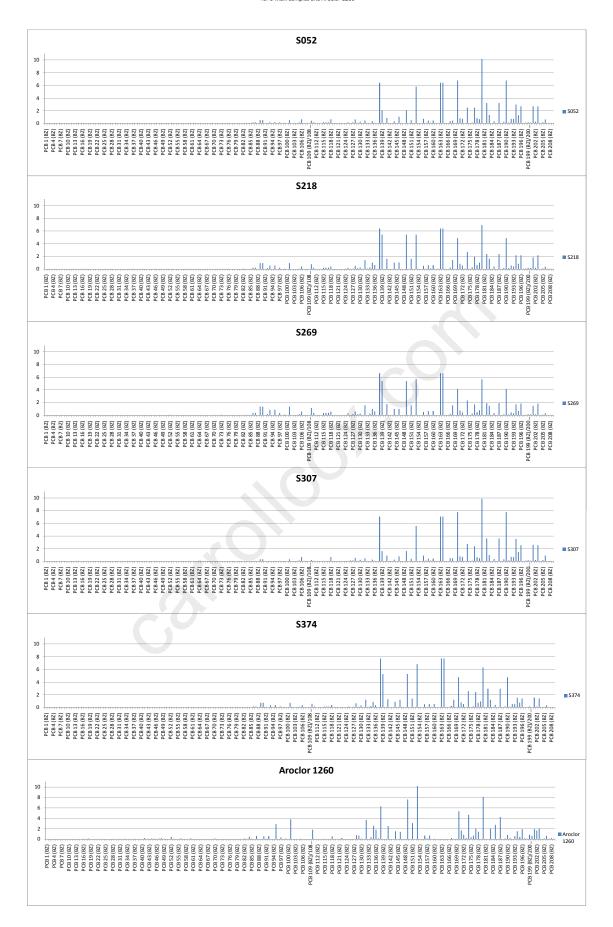
		S052			S218			S269			S307			S374		Average percent in	
	Result	Footnotes	RL	Result	Footnotes	RL	Result	Footnotes	RL	Result	Footnotes	RL	Result	Footnotes	RL	Aroc	or (a)
Component	pg/g		pg/g	pg/g		pg/g	pg/g		pg/g	pg/g		pg/g	pg/g		pg/g	1254	1260
PCB 182 (BZ)	4800	C E	21	220000	CED	410	280000	CED	790	51000	CED	200	230000	CED	420		
PCB 183 (BZ)	2000		21	150000	E D	410	220000	E D	790	14000	D	200	94000	E D	420	0.17	2.03
PCB 184 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420		
PCB 185 (BZ)	540		21	37000	D	410	52000	D	790	5300	D	200	32000	D	420		2.72
PCB 186 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420		
PCB 187 (BZ)	4800	CE	21	220000	CED	410	280000	CED	790	51000	CED	200	230000	CED	420	0.32	4.24
PCB 188 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420		
PCB 189 (BZ)	390		2.1	16000	D	41	24000	D	79	4500	D	20	13000	D	42		0.13
PCB 190 (BZ)	10000	CE	21	450000	CED	410	610000	CED	790	110000	CED	200	370000	CED	420	0.08	0.79
PCB 191 (BZ)	220		21	13000	D	410	19000	D	790	2100	D	200	8800	D	420		0.18
PCB 192 (BZ)	1100	С	21	51000	CED	410	68000	C D	790	10000	C D	200	42000	CED	420		
PCB 193 (BZ)	1100		21	37000	D	410	47000	D	790	10000	D	200	39000	D	420		0.57
PCB 194 (BZ)	4400	E	21	200000	E D	410	250000	E D	790	50000	E D	200	120000	E D	420		1.5
PCB 195 (BZ)	1900		21	77000	E D	410	100000	E D	790	21000	E D	200	60000	E D	420		0.38
PCB 196 (BZ)	4000	CE	21	200000	CED	410	270000	CED	790	36000	CED	200	110000	CED	420		1.9
PCB 197 (BZ)	67		21	5800	D	410	8400	D	790	430	D	200	2000	D	420		0.12
PCB 198 (BZ)	220		21	8800	D	410	11000	D	790	1900	D	200	6100	D	420		0.09
PCB 199 (BZ)/200 (IUPAC)	330		21	19000	D	410	26000	D	790	2800	D	200	12000	D	420		0.82
PCB 200 (BZ)/201 (IUPAC)	200		21	15000	D	410	20000	D	790	1400	D	200	6200	D	420		0.62
PCB 201 (BZ)/199 (IUPAC)	4000	E	21	170000	E D	410	220000	E D	790	37000	E D	200	120000	E D	420	0.68	1.95
PCB 202 (BZ)	420		21	19000	D	410	24000	D	790	3300	D	200	13000	D	420	0.05	1.65
PCB 203 (BZ)	4000	CE	21	200000	CED	410	270000	CED	790	36000	CED	200	110000	CED	420		2.05
PCB 204 (BZ)	ND		21	ND	D	410	ND	D	790	ND	D	200	ND	D	420		
PCB 205 (BZ)	300		21	10000	D	410	14000	D	790	3300	D	200	7800	D	420		0.13
PCB 206 (BZ)	940		21	36000	D	410	48000	D	790	13000	D	200	27000	D	420		0.65
PCB 207 (BZ)	63		21	4000	D	410	5500	D	790	650	D	200	1700	D	420		0.07
PCB 208 (BZ)	120		21	4600	D	410	6400	D	790	1100	D	200	2900	D	420		0.17
PCB 209 (BZ)	80		21	ND	D	410	ND	D	790	ND	D	200	480	D	420		0.05
Totals	147926			9235022			14642382			1416612			7760284				
								•	•	B				Т	otal (%)	96.25	105.55
Total minus coelutes	114126			6034512			9261882			943283			4986864				
Total minus coelutes (mg/kg)	1.14			6.03			9.26			0.943			4.99				

(a) Bush et al. (1985), Safe et al. (1985), Schulz et al. (1989), Smith et al. (1990)

(b) = no data.

C - Co-eluting isomer

Q - Estimated maximum possible concentration (EMPC)


G - Elevated reporting limit. The reporting limit is elevated due to matrix interference

D - Result was obtained from the analysis of a dilution

E - Estimated results. Result concentration exceeds the calibration range

B - Method blank contamination. The associated method blank contains the target analyte at a reportable level

Percentage of Total vs. PCB congener for 5 Maili samples and Aroclor 1260

